Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Wykład no 9.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Opis matematyczny elementów i układów liniowych
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Stabilność dyskretnych układów regulacji
Technika optymalizacji
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Modele dyskretne obiektów liniowych
Wykład 23 Modele dyskretne obiektów
Teoria sterowania Wykład 9 Transmitancja operatorowa i stabilność liniowych układu regulacji automatycznej.
Teoria sterowania Wykład 13 Modele dyskretne obiektów regulacji.
II. Matematyczne podstawy MK
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Podstawy automatyki I Wykład /2016
Podstawy automatyki I Wykład /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Analiza numeryczna i symulacja systemów
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania systemu Interesujemy się stabilnością systemu, bo chcemy: ustabilizować system niestabilny uczynić bardziej stabilnym system stabilny Istnieje kilka możliwych definicji stabilności – większość z nich odwołuje się do pojęcia punktu/stanu równowagi

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 2 Dla systemów opisanych równaniem stanu System ciągły System dyskretny mówimy, że punkt/stan jest punktem/stanem równowagi, jeżeli jest stanem systemu dla pewnej chwili początkowej t 0 lub k 0 i pozostaje nim dla wszystkich chwil następnych przy zerowej wartości wejścia To oznacza, że spełnia równanie System ciągły System dyskretny Inaczej: system znajdujący się w stanie równowagi pozostanie w nim, jeżeli nie będzie na niego oddziaływać żadne wejście

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 3 Uwaga: istnienie stanu równowagi dla systemu nie zapewnia jego stabilności Stabilny stan równowagi Niestabilny stan równowagi Uwaga: Stan równowagi a stan stacjonarny System ciągły – stan równowagi System dyskretny – stan równowagi System ciągły – stan stacjonarny System dyskretny – stan stacjonarny

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 4 Dla systemu liniowego stan równowagi może być znaleziony przez rozwiązanie równania System ciągły System dyskretny Wniosek: stan jest zawsze stanem równowagi systemu liniowego, ale mogą istnieć również inne stany równowagi Stan jest jedynym stanem równowagi systemu liniowego, jeżeli System ciągły System dyskretny Macierz jest nieosobliwa dla wszystkich wartości Taki stan równowagi nazywamy odosobnionym/izolowanym (ang. isolated) stanem równowagi Macierz jest nieosobliwa dla wszystkich wartości

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 5 Macierz ma co najmniej jedną wartość własną równą zero dla dowolnej wartości Macierz ma co najmniej jedną wartość własną równą jeden dla dowolnej wartości System ciągły System dyskretny Jeżeli, system dynamiczny liniowy ma nieskończenie wiele stanów równowagi W takim przypadku możemy napisać, że stan równowagi spełnia równanie System ciągły System dyskretny co pokazuje, że nieskończenie wiele wektorów własnych postaci jest stanami równowagi

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 6 Formalne definicje stabilności podamy dla systemów ciągłych, lecz są one poprawne również dla systemów dyskretnych (zamiana czasu ciągłego t na dyskretny k wówczas dla wszystkich Stabilność Stan jest stanem stabilnym równowagi dla chwili, jeżeli dla dowolnej istnieje wartość taka, że jeżeli Stan, który jest stabilny w powyższym sensie jest nazywany stabilnym w sensie Lapunowaa Jeżeli dla stabilności w powyższym sensie wartość jest niezależna od wyboru chwili to stan to stan nazywamy jednorodnie stabilnym Niestabilność Stan jest stanem niestabilnym równowagi dla chwili, jeżeli nie jest on stabilny

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 7 Ilustracja stabilności dla systemu rzędu drugiego

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 8 taka, że jeżeli wówczas Stabilność asymptotyczna Stan jest stanem asymptotycznie stabilnym równowagi dla chwili, jeżeli jest stabilny (w sensie Lapunowa) i jeżeli istnieje wartość Jeżeli dla stabilności w powyższym sensie wartość jest niezależna od wyboru chwili to stan to stan nazywamy jednorodnie asymptotycznie stabilnym Ilustracja asymptotycznej stabilności dla systemu rzędu drugiego

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 9 Podane definicje stabilności są kryteriami stabilności wewnętrznej – sformułowane dla zerowych wartości wejścia spełniające warunek dla wszystkich, wówczas system Stabilność BIBO Jeżeli jakiekolwiek wejście systemu spełniające warunek (tzn. wejście jest ograniczone) dla wszystkich wywołuje wyjście systemu jest stabilny w sensie ograniczone-wejście-ograniczone-wyjście (ang. bounded-input-bounded-output, BIBO)

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 10 Przełożenie (bez dowodów) podanych warunków stabilności dla systemu liniowego stacjonarnego ciągłego; ograniczymy się do stanu równowagi Stabilność wewnętrzna Stan systemu liniowego stacjonarnego jest stabilny w sensie Lapunowa Stabilność (w sensie Lapunowa) wtedy i tylko wtedy, gdy wartości własne macierzy systemu mają niedodatnie części rzeczywiste i jeżeli wartości własne leżące na osi urojonej (mające zerowe części rzeczywiste) są jednokrotne (nie powtarzają się) Stan systemu liniowego stacjonarnego jest globalnie asymptotycznie Stabilność asymptotyczna stabilny wtedy i tylko wtedy, gdy wartości własne macierzy systemu mają ujemne części rzeczywiste

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 11 Przykład 1. Dany jest system dynamiczny z wartościami współczynników Zbadać stabilność wewnętrzną systemu

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 12 Wielomian charakterystyczny macierzy Dla przykładu Wartości własne macierzy Wnioski: System a ma wszystkie wartości własne w lewej półpłaszczyźnie zespolonej i jest zatem globalnie asymptotycznie stabilny System b ma jedną wartość własna na osi urojonej i jest zatem stabilny w sensie Lapunowa System c ma podwójną wartość własną na osi urojonej i jest zatem niestabilny

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 13 Wyniki symulacji System a. Macierz nieosobliwa, zatem stan równowagi Weźmy: warunek początkowy wejście

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 14 System b. Macierz osobliwa, stanów równowagi nieskończenie wiele Weźmy: warunek początkowy wejście Wektor własny związany z wartością własną ma postać gdzie, q dowolna liczba Dowolny wektor początkowy równy temu wektorowi własnemu będzie stanem równowagi Jeżeli wybierzemy inny warunek początkowy system osiągnie pewien stan równowagi zgodny z podanym warunkiem dla stanu równowagi Wyniki symulacji

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 15 Wynik symulacji

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 16 System c. Macierz osobliwa, stanów równowagi nieskończenie wiele, brak stabilnych Weźmy: warunek początkowy wejście Wyniki symulacji

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 17 Przełożenie (bez dowodów) podanych warunków stabilności dla systemu liniowego stacjonarnego dyskretnego; ograniczymy się do stanu równowagi Stabilność wewnętrzna Stan systemu liniowego stacjonarnego jest stabilny w sensie Lapunowa Stabilność (w sensie Lapunowa) wtedy i tylko wtedy, gdy wartości własne macierzy systemu nie leżą na zewnątrz okręgu jednostkowego i jeżeli wartości własne leżące na okręgu jednostkowym są jednokrotne Stan systemu liniowego stacjonarnego jest globalnie asymptotycznie Stabilność asymptotyczna stabilny wtedy i tylko wtedy, gdy wartości własne macierzy systemu leżą ściśle wewnątrz okręgu jednostkowego

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 18 Stabilność zewnętrzna Przełożenie (bez dowodów) podanych warunków stabilności BIBO dla systemu liniowego stacjonarnego ciągłego i dyskretnego System ciągły liniowy stacjonarny jest opisany równaniem stanu i równaniem Stabilność BIBO – system ciągły wyjścia jest BIBO stabilny wtedy i tylko wtedy, gdy bieguny macierzy transmitancji leżą ściśle w lewej półpłaszczyźnie zespolonej System dyskretny liniowy stacjonarny jest opisany równaniem stanu i Stabilność BIBO – system dyskretny równaniem wyjścia jest BIBO stabilny wtedy i tylko wtedy, gdy bieguny macierzy transmitancji leżą ściśle wewnątrz okręgu jednostkowego

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 19 Stabilność wewnętrzna a zewnętrzna Przykład 2. Dany jest system dynamiczny Zbadać stabilność wewnętrzną i zewnętrzną systemu Wyliczenie wartości własnych wielomianu charakterystycznego macierzy

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 20 Wartości własne Wniosek: system jest niestabilny wewnętrznie Model zewnętrzny

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 21 Wskutek skrócenia pary biegun-zero bieguny systemu system jest zewnętrznie stabilny (BIBO – stabilny) Wyniki symulacji dla wejścia – skok jednostkowy i zerowych warunków początkowych Niestabilność stanów

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 22 Stabilność wyjścia

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 23 Podsumowanie: Każdy system stabilny asymptotyczne w sensie Lapunowa jest stabilny w sensie BIBO System stabilny w sensie Lapunowa może być - niestabilny w sensie BIBO - stabilny w sensie BIBO System stabilny w sensie BIBO nie musi być stabilny w sensie Lapunowa

Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 24 Dziękuję za uczestnictwo w wykładzie i uwagę