Dane INFORMACYJNE (do uzupełnienia)

Slides:



Advertisements
Podobne prezentacje
CIEKAWOSTKI MATEMATYCZNE
Advertisements

TWIERDZENIE PITAGORASA
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Brzezinach ID grupy: 98/72
Wielki symbol Geometryczny liczby
Liczba π.
Opracowała: Agnieszka Siry
Pytanie 1.     Co to za trójkąt, który ma jeden kąt prosty?
Dane INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE Nazwa szkoły: IX Liceum Ogólnokształcące w Poznaniu ID grupy: 97/44_mf_g1 Kompetencja: matematyczno-fizyczna Temat projektowy: Różne.
Projekt „AS KOMPETENCJI’’
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
DANE INFORMACYJNE Nazwa szkoły: II Liceum Ogólnokształcące
Dane INFORMACYJNE Nazwa szkoły:
MATEMATYCZNO FIZYCZNA
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gimnazjum i Liceum im. Michała Kosmowskiego w Trzemesznie. ID grupy: 97_59_MF_G1 Opiekun: Aurelia Tycka-
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lichnowach
DANE INFORMACYJNE Gimnazjum Nr 43 w Szczecinie ID grupy: 98/38_MF_G2
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE szkoły
„Zbiory, relacje, funkcje”
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum nr 5 w Poznaniu ID grupy: 98/30_mf_g2 Opiekun: Olga Jakubczyk Kompetencja: matematyczno-fizyczna Temat projektowy:
MATEMATYKA STAROŻYTNA matematyka pitagorejska
Pitagoras i jego dokonania
ZŁOTA LICZBA Sebastian Nowakowski MiBM Gr. 3 Sem. VI.
Iluzje matematyczne.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Pole koła Violetta Karolczak SP Brzoza.
Ciekawe liczby Co jest najmądrzejsze? Liczba. Co jest najpiękniejsze? Harmonia. Czym jest cały świat? Liczbą i harmonią.  Pitagoras.
WITAJ!!! Opracowanie: Beata Charyga.
Dane INFORMACYJNE Nazwa szkoły:
Dane informacyjene Nazwa szkoły ID grupy Kompetencja Temat projektowy
Liczby zaprzyjaźnione
Ciekawe liczby Joanna Czarnecka r..
CIEKAWE LICZBY Rzeczy posiadają byt na tyle, na ile jest w nich liczba. Ludzie, którzy pracują nad formami materialnymi, wkładają liczbę w sztukę i w.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Katarzyna Joanna Pawłowicz, kl. III a
Zespół Szkół Ogólnokształcących w Śremie
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
DANE INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE 97_10_MF_G1 i 97_93_MF_G1 Kompetencja:
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE (do uzupełnienia)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE (do uzupełnienia)
Autorzy: Magda Jóźwik Adrianna Prokop
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane Informacyjne Nazwa szkoły:
Trójkąt Pascala Własności i Ciekawostki.
Witamy ! Zapraszamy do obejrzenia prezentacji na temat : Twierdzenia matematyczne, o których warto pamiętać.
KINDERMAT 2014 „Matematyka to uniwersalny język, za pomocą którego opisany jest świat”
Wszystko jest liczbą czyli Kim był Pitagoras
Rodzaje Liczb JESZCZE SA TAKIE
FIGURY PŁASKIE.
Liczba π, ludolfina – stała matematyczna, która pojawia się w wielu działach matematyki i fizyki. W geometrii euklidesowej π jest równe stosunkowi obwodu.
Liczba π.
Zapis prezentacji:

Dane INFORMACYJNE (do uzupełnienia) Gimnazjum w Kazimierzu Biskupim im. Polskich Olimpijczyków Gimnazjum im. Mieszka I w Cedyni ID grupy: 98/90_MF_G1; 98/10_MF_G1 Kompetencja: Matematyka z fizyką Temat projektowy: W świecie liczb Semestr/rok szkolny: semestr III

W świecie liczb

Liczby Zaprzyjaźnione Co to jest przyjaciel ? - Przyjaciel to drugi ja; przyjaźń, to stosunek liczb 220 i 284. - Pitagoras

Liczby „Przyjaciółki” Liczby zaprzyjaźnione to para liczb naturalnych, takich że suma dzielników każdej z tych liczb równa się drugiej. Liczby „Przyjaciółki” Pierwszą parą takich liczb, która została podana już przez Pitagorasa, jest para liczb 220 i 284, ponieważ: 220 = 1 + 2 + 4 + 71 + 142 (dzielniki 284) 284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 (dzielniki 220)

Każda liczba doskonała jest zaprzyjaźniona sama ze sobą Każda liczba doskonała jest zaprzyjaźniona sama ze sobą. Znanych jest około miliona par liczby zaprzyjaźnionych. Nie wiadomo jednak czy istnieje ich nieskończenie wiele.

Poniższa tabela podaje 10 przykładów par liczb zaprzyjaźnionych: 220 1 184 2 620 284 1 210 2 924 5 020 5 564 6 232 6 368 10 744 10 856 12 285 14 595 17 296 18 416 63 020 76 084

Liczby kwadratowe Nazwa „liczby kwadratowe” pochodzi stąd, że każda taka liczba o numerze n jest liczbą np. kół jednakowej wielkości, z których można ułożyć kwadrat o boku zbudowanym z n kół. Oto sposób odnajdywania kolejnych liczb kwadratowych i zarazem ich geometryczna ilustracja

Poniższa tabela ilustruje zależność między numerem liczby kwadratowej (wskaźnikiem , indeksem) a samą liczbą kwadratową : Numer liczby 1 2 3 4 5 6 7 8 9 Liczby kwadratowe 16 25 36 49 64 81

Zależność tę wyraża wzór : kn = n2 = 1+3+7+ … + ( 2n-1) Gdzie n jest liczbą naturalną .

LICZBY TRÓJKĄTNE Nazwa „liczby trójkątne pochodzi stąd, że każda taka liczba o numerze n jest liczbą np. kół jednakowej wielkości, z których można ułożyć trójkąt równoboczny o boku zabudowanym z n kół. Oto sposób odnajdowania kolejnych liczb trójkątnych i zarazem ich geometryczna ilustracja:

Poniższa tabela ilustracje zależność między numerem liczby trójkątnej (wskaźnikiem, indeksem), a sama liczbą trójkątną Numer liczby 1 2 3 4 5 6 7 …… Liczby trójkątne 10 15 21 28

Zależność na n-tą liczbę trójkątną można więc wyrazić za pomocą wzoru:

Trójkąt, który nazwano jego imieniem i którym się posługujemy ma postać: TRÓJKĄT PASCALA Wielki francuski filozof, moralista i matematyk Blaise Pascal (1623 – 1662). Rozmaitości matematyczne: Stanisław Kowal

Liczby doskonałe Liczba doskonała to taka liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej samej.

Jak powstały liczby doskonałe? Liczby doskonałe zostały wynalezione przez pitagorejczyków. To oni podali pierwsze cztery kolejne liczby doskonałe: 6, 28, 496, 8128 (np. 6=1+2+3, 28=1+2+4+7+14). Nie wiadomo, czy istnieje nieskończenie wiele liczb doskonałych. Nie wiadomo również, czy istnieje choć jedna liczba doskonała nieparzysta.

Zagadnienie liczb doskonałych Zagadnieniem liczb doskonałych zajmował się Euklides ( IV w. p.n.e.). Podał on regułę odnajdowania parzystych liczb doskonałych: N=2k-1(2k-1), Gdzie (2k -1) musi być liczbą pierwszą dla k>1 (naturalnego).

Poniższa tabela ilustruje znajdowanie liczb doskonałych według reguły Liczby doskonałe 2 3 5 7 13 1719 31 … 4 16 64 4096 65536 262144 824 127 8191 131071 524277 2147483 647 6 28 496 8128 33550336 8589869056 137438691328 2305843008139 952128

ZŁOTY PODZIAŁ Złoty podział to określenie proporcji boków prostokąta. Prostokąt może mieć dowolną szerokość, ale jego długość powinna stanowić nieco ponad 1,6 szerokości. Starożytni Grecy uznawali prostokąt spełniający zasadę złotego podziału, czyli o proporcji boków około 1 : 1,618 za kształt najprzyjemniejszy dla oka. SZEROKOŚĆ DŁUGOŚĆ 1 1,618 2 2,236 1.618 X 1 5 8,09 1,618 X 5

Liczby fibonacciego Ciąg liczbowy o wyrazach: a1 = 1; a2 = 1; an = an-2 + an-1 (dla n =>3) Pierwsze liczby Fibonacciego: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . 1+1 = 2; 1+2=3; 2+3=5; 3+5=8; 5+8=13; 8+13=21; 13+21=34; 21+34=55; 34+55= . . .

KONSTRUKCA ZŁOTEGO PROSTOKĄTA 1 Ścieżki matematyki: Nigel Langdon i Charles Snape

KONSTRUKCA ZŁOTEGO PROSTOKĄTA 2 Ścieżki matematyki: Nigel Langdon i Charles Snape

ZAGADKA – KRÓLIKI I LICZBY W styczniu dostałeś parę królików. Po dwóch miesiącach para ta rodzi po raz pierwszy nową parę, a potem regularnie jedną parę co miesiąc. Podobnie ma się rzecz z każdą nową parą królików: po dwóch miesiącach od urodzenia rodzi ona po raz pierwszy nową parę, a potem jedną nową co miesiąc. Ile królików będziesz miał w grudniu? Ścieżki matematyki: Nigel Langdon i Charles Snape

Ścieżki matematyki: Nigel Langdon i Charles Snape KWADRAT MAGICZNY Kwadratem magicznym nazywamy kwadrat składający się z n2 kwadracików jednostkowych, wypełniony n2 liczbami naturalnymi w ten sposób, że sumy liczb dowolnego wiersza, czy dowolnej kolumny, czy liczb stojących na przekątnych równają się tej samej liczbie.

WŁAŚCIWOŚCI KWADRATÓW MAGICZNYCH Kwadraty magiczne dzielimy na: - parzyste( 4, 16 36, 64 … kwadraciki jednostkowe) - nieparzyste (9, 25, 49, …. Kwadracików) 2 9 4 7 5 3 6 1 8 Stałą liczbę Sn kwadratu magicznego obliczamy wg wzoru: Sn = ½ n(n2 + 1) Dla n=3 stała liczba wynosi 15 dla n=5 stała liczba wynosi 65 11 9 2 18 25 5 23 16 7 14 22 20 13 4 6 8 1 24 15 17 19 12 10 21 3 Kwadraty nieparzyste maja liczbę środkową. w kwadracie trzeciego rzędu liczbą środkową jest 5: obliczamy ją wg wzoru: 1/n x Sn w kwadracie piątego rzędu liczbą środkową jest 13

3,14 Pole koła P = π∙r2 Obwód koła Ob = 2∙π∙r LICZBA π STOSUNEK DŁUGOŚCI OKRĘGU DO DŁUGOŚCI ŚREDNICY JEST DLA WSZYSTKICH OKRĘGÓW TA SAMĄ LICZBĄ. LICZBĘ TE OZNACZAMY GRECKĄ LITERĄ π W 1610 ROKU HOLENDERSKI UCZONY Ludolf van Ceulen podał 35 cyfr po przecinku – na jego cześć liczbę π nazwano ludolfiną. W czasach starożytnych używano przybliżeń liczby π w postaci ułamków zwykłych π≈ 25/8 - Babilonia π≈ 22/7 - Grecja π≈ 355/113 – Chiny Pole koła P = π∙r2 Obwód koła Ob = 2∙π∙r

14 marca Światowy dzień liczby π JAŚ O KOLE Z WERWĄ DYSKUTUJE, BO DOBRZE TEMAT TEN CZUJE. ZASTAPIŁ LUDOLFINĘ SŁOWAMI WIERSZYKA. CZY TY JUŻ ODGADŁEŚ, SKĄD ZMIANA TA WYNIKA? … FOR A TIME I STOOD PONDERING ON CIRCLE SIZES. THE LARGE COMPUTER MAINFRAME QUIETLY PROCESSED ALL OF ITS ASSEMBLY CODE. INSIDE MY ENTIRE … Światowy dzień liczby π 14 marca

LICZBY PIERWSZE Każdą liczbę różną od 1, która dzieli się tylko przez siebie samą i przez 1, nazywamy liczba pierwszą Już starożytnym Grekom liczby pierwsze wydawały się fascynujące i nieuchwytne. Przez całe stulecia matematycy usiłują je wytropić na wiele rozmaitych sposobów. Jedną z najskuteczniejszych metod okazała się metoda odkryta przez Eratostenesa – matematyka i astronoma z Aleksandrii – SITO ERATOSTENESA.

dzIĘKUJEMY ZA UWAGĘ 