Szacowanie błędu lokalnego w metodach jednokrokowych

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Rozwiązywanie równań różniczkowych metodą Rungego - Kutty
Metody badania stabilności Lapunowa
Metody numeryczne część 1. Rozwiązywanie układów równań liniowych.
OSCYLATOR HARMONICZNY
Metody rozwiązywania układów równań liniowych
BUDOWA MODELU EKONOMETRYCZNEGO
Metody Numeryczne Wykład no 12.
Wykład no 9.
Przykład: Dana jest linia długa o długości L 0 bez strat o stałych kilometrycznych L,C.Na początku linii zostaje załączona siła elektromotoryczna e(t),
Wykład no 11.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
Metoda węzłowa w SPICE.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
ZLICZANIE cz. II.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Metody matematyczne w Inżynierii Chemicznej
Opis matematyczny elementów i układów liniowych
Elementy Rachunku Prawdopodobieństwa i Statystyki
Metody matematyczne w Inżynierii Chemicznej
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wprowadzenie do ODEs w MATLAB-ie
Stabilność metod numerycznych
Źródła błędów w obliczeniach numerycznych
Sterowanie – metody alokacji biegunów
Drgania punktu materialnego
Metody matematyczne w Inżynierii Chemicznej
MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii.
Tematyka zajęć LITERATURA
Metody matematyczne w inżynierii chemicznej
Całkowanie różniczkowego równania ruchu metodą Newmarka
Metody rozwiązywania układów równań nieliniowych
Metody nieinkluzyjne: Metoda iteracji prostej.
Regresja liniowa Dany jest układ punktów
MECHANIKA NIEBA WYKŁAD r. E r Zagadnienie dwóch ciał I prawo Keplera Potencjał efektywny Potencjał efektywny w łatwy sposób tłumaczy kształty.
Metody rozwiązywania układów równań liniowych
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
jawny schemat Eulera [globalny błąd O(Dt)]
region bezwzględnej stabilności dla ogólnej niejawnej metody RK
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
U(t) t  t u’(t)=f(t,u) u(t+  t)=u(t)+  (t,u(t),  t) RRZ: Jednokrokowy schemat różnicowy.
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej.
Czy błąd całkowity maleje gdy Dt maleje ? Czy maleje do zera?
jawna metoda Eulera niejawna metoda Eulera
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem.
yi b) metoda różnic skończonych
Stosowane modele równowagi ogólnej (CGE) Wykład 2.
Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
Treść dzisiejszego wykładu l Szeregi stacjonarne, l Zintegrowanie szeregu, l Kointegracja szeregów.
/ /61/3 1/6 Tabela Butchera dla klasycznej jawnej RK4.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Metody matematyczne w Inżynierii Chemicznej
Analiza numeryczna i symulacja systemów
Jednorównaniowy model regresji liniowej
Teoria sterowania Materiał wykładowy /2017
Analiza obwodów z jednym elementem reaktancyjnym
Sterowanie procesami ciągłymi
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Zapis prezentacji:

Szacowanie błędu lokalnego w metodach jednokrokowych Po co? 1) W rachunkach numerycznych musimy znać oszacowanie błędu Gdy oszacowanie jest w miarę dokładne: można poprawić wynik Aby ustawić krok czasowy tak, aby błąd był akceptowalny

Oszacowanie błędu lokalnego w metodach jednokrokowych W każdym kroku generujemy nowy błąd w rachunkach. Znamy jego rząd. dla RK: wstawialiśmy rozwiązanie dokładne do schematu i je rozwijaliśmy w szereg T. wybór b1=0, b2=1, c=1/2, a=1/2 dawał RK2 punktu środkowego Rozwijając do jednego rzędu wyżej z Dt uzyskamy oszacowanie błędu lokalnego dn= u(tn) - un [przy założeniu, że u(tn-1) = un-1] świetny wzór choć mało praktyczny

Oszacowanie błędu (lokalnego) w metodach jednokrokowych metodą rzędu p z chwili tn-1 wykonujemy krok do tn może zależeć od tn-1 oraz un-1, ale nie zależy od Dt folia wcześniej szacowanie błędu: ekstrapolacja Richardsona (step doubling) osadzanie (embedding)

ekstrapolacja Richardsona dwa kroki Dt: dostaniemy lepsze oszacowanie u(tn+1) tn-1 tn tn+1 Dt Dt jeden krok 2Dt: dostaniemy gorsze oszacowanie u(tn+1) tn-1 tn+1 2Dt szacujemy Cn z porównania obydwu rozwiązań

(lub, ze w jednym kroku zmienia się o O(Dt)] ekstrapolacja Richardsona błąd lokalny u(tn)-un=dn jest: wykonujemy krok następny od tn do tn+1 odchylenie wyniku numerycznego od dokładnego u(tn+1)-un+1= g dn +dn+1 zakładamy, że krok jest na tyle mały, że stała błędu się nie zmienia Cn Cn+1 (lub, ze w jednym kroku zmienia się o O(Dt)] wtedy błąd lokalny popełniony w chwili tn+1 jest dn+1  dn. 2) gdy krok mały: współczynnik wzmocnienia błędu g  1 (błąd popełniony w kroku pierwszym nie jest istotnie wzmacniany) Przy tym założeniu: błąd po drugim kroku – suma błędów g dn+dn+1  2dn,

ekstrapolacja Richardsona tn-1 tn tn+1 Dt Dt to chwili tn+1 dojdziemy z tn-1 w pojedynczym kroku 2Dt tn-1 tn+1 2Dt dostaniemy gorsze oszacowanie u(tn+1) chcemy poznać Cn (to + znajomość p da nam oszacowanie błędu): odejmujemy niebieskie wzory tak aby wyeliminować rozwiązanie dokładne (nam niedostępne)

ekstrapolacja Richardsona błąd wykonany po dwóch krokach Dt wynosi więc: pierwszy wniosek: jeśli znamy rząd metody p to potrafimy go podnieść o jeden

ekstrapolacja Richardsona podnosimy rząd dokładności metody „algorytm”

Euler (p=1) błąd lokalny O(Dt2) Przykład: ekstrapolacja Richardsona r. dokładne: Euler (p=1) błąd lokalny O(Dt2) Euler po poprawce: błąd lokalny O(Dt3) kreski: RK2 punktu środkowego (p=2), b.lok. O(Dt3) znając rząd dokładności możemy radykalnie poprawić dokładność metody przy natdatku (50 procent) numeryki

ekstrapolacja Richardsona Euler RK2 RK2 z odciętym błędem

Oszacowanie błędu lokalnego w metodach jednokrokowych ekstrapolacja Richardsona (step doubling) osadzanie (embedding) cel: szacujemy błąd lokalny metody rzędu p przy pomocy lepszej metody, np. rzędu p+1 obydwie metody szacują rozwiązanie w tych samych chwilach czasowych co daje oszacowanie błędu gorszej metody nie nadaje się do poprawiania schematu p po cóż zresztą poprawiać gdy mamy p+1

celem szacowania błędu nie jest poprawa wyniku, (dla poprawy zawsze można Dt zmienić) lecz adaptacja Dt : stały krok zawsze może okazać się zbyt wielki albo zbyt mały. JAKI KROK CZASOWY SYMULACJI USTAWIĆ gdy coś ciekawego zdarza się tylko czasem ?

Dt(nowy)=(tol/E)1/(p+1) Dt Automatyczna kontrola kroku czasowego dla metod jednokrokowych Program może sam dobierać krok czasowy w zależności od tego co dzieje się w symulacji. Chcemy utrzymać błąd na poziomie zbliżonym do parametru tol. nie większy aby zachować wymaganą dokładność, nie mniejszy aby nie tracić czasu na rachunki zbyt dokładne Szacujemy błąd lokalny E (ekstrapolacja Richardsona lub metody embedding) E=C[Dt]p+1 chcemy zmienić krok odpowiednio do naszych wymagań z Dt do Dt(nowy) tol=C[Dt(nowy)]p+1 Dt(nowy)=(tol/E)1/(p+1) Dt Dt(nowy)=(S tol /E)1/(p+1) Dt dla bezpieczeństwa S<1 wzór zwiększy zbyt mały krok i vice versa uwaga: błąd jest szacowany, zawsze warto dorzucić sztywne ograniczenia na Dt

do { } while ( t<T) Dt:=(S tol /E)1/(p+1) Dt Automatyczna kontrola kroku czasowego dla metod jednokrokowych symulacja ustawiająca krok czasowy może wyglądać np. tak: u0= warunek początkowy t0=0 n=1 do { jeśli E<tol { tn:=tn+Dt n:=n+1 (oznacza akceptację wyniku) } Dt:=(S tol /E)1/(p+1) Dt } while ( t<T)

RK2 Dt x2 V2 Przykład: oscylator harmoniczny używane oszacowanie błędu z RK2 Uwaga: tutaj rozwiązania nie poprawiamy przez ekstrapolacje tolerancja błędu obcięcia tol=0.1 RK2 start Dt x2 V2 tol=1e-2 tol=1e-3 algorytm ustawia minimalny krok czasowy gdy zmiany prędkości lub położenia są maksymalne

wyniki Konrada Rekiecia RK4 – spirala się skręca zamiast rozkręcać E(t) tol=.1 RK2 RK4 przy założonej tolerancji RK4 wcale nie jest dokładniejsze od RK2

... tylko pozwala stawiać dłuższe kroki dt

Problemy sztywne

u(0)=0 proste równanie traktowane jawnym schematem Eulera 19

prosty problem nieco komplikujemy a=10 niech a >> 0 szybkozmienna składowa składowa wolnozmienna 20

krzyżyki : t2 kółka : t2 + exp(-100t) rozwiązanie a=0 krok dt=0.02 jest bardzo drobny w porównaniu ze skalą zmienności składowej parabolicznej krzyżyki : t2 kółka : t2 + exp(-100t) 21

gdy włączyć składową szybkozmienną rozwiązanie dt=0.019 dt=0.02 dt=0.021 dokładne krok dt=0.02 okazuje się zbyt długi gdy włączyć składową szybkozmienną nawet tam, gdy znika ona z rozwiązania 22

część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera rozwiązanie dt=0.019 dt=0.02 dt=0.021 dokładne część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera nakłada ograniczenie na krok czasowy : u’=-au a=100  dt<0.02, gdy szybkozmienna składowa zaniknie dt jest bardzo mały w porównaniu do skali zmienności u(t) 23

w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma ... regiony stabilności metod Eulera Dt Im (l) Dt Im (l) -1 1 1 -2 Dt Re(l) Dt Re(l) -1 -1 metoda Eulera jawna niejawna metoda Eulera w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma ... 24

rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże niejawna metoda Eulera: zastosowanie do problemu sztywnego dokładny dt=0.02 dt=0.04 rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże dla małych t można wstawić mniejsze dt, potem krok zwiększyć 25

Problemy sztywne (drętwe) (stiff, stiffness) Problem jest praktyczny i ścisłej definicji, która byłaby użyteczna, nie ma . Jedna z możliwych: problem jest sztywny, gdy stosując schemat jawny musimy przyjąć krok czasowy bardzo mały w porównaniu ze skalą zmienności funkcji. RRZ jest problemem sztywnym gdy: Problem jest charakteryzowany bardzo różnymi skalami czasowymi Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. Metody jawne się nie sprawdzają. szybkozmienna składowa składowa wolnozmienna niech a >> 0 26

Problemy sztywne (drętwe) (stiff) problem najczęściej spotykany dla układ równań różniczkowych opisujących sprzężone procesy o bardzo różnych skalach czasowych Ogólna postać układu równań pierwszego rzędu wektor Rn fcja RRn R Tylko niekiedy można podać rozwiązanie w zamkniętej formie analitycznej. Można, np. dla jednorodnego problemu liniowego 27

y1(0)=0 y2(0)=1 wartości własne –l1, –l2 rozłożyć warunek początkowy problemy sztywne gdzie dla niezdegenerowanych wartości własnych cj liczone z warunku początkowego np. problem rozpadu promieniotwórczego Izotop 2 o stałej rozpadu l2 rozpada się promieniotwórczo na inny izotop 1 o stałej rozpadu l1 y1(0)=0 y2(0)=1 wartości własne –l1, –l2 rozłożyć warunek początkowy na wektory własne 28

gdy duża rozpiętość między minimalną problemy sztywne gdy duża rozpiętość między minimalną a maksymalną wartością własną |lmax/lmin|>>1: wektor własny który odpowiada największej wartości własnej wygaśnie najprędzej, ale (dla metod jawnych) pozostawi najsilniejsze ograniczenie dla kroku czasowego (np. Euler, RK2 dt<2/|lmax|) jesteśmy zmuszeni przyjąć malutki krok w porównaniu z przebiegiem rozwiązania (w przeciwnym wypadku eksplozja) duże różnice skal czasowych 29

u’’+1001u’+1000u=0 następny przykład: podobny do poprzedniego problem sztywny z liniowego równania drugiego rzędu o bliskich współczynnikach u’’+1001u’+1000u=0 wartości / wektory własne: -1 / [-1,1]T -1000 / [1,-1000]T bardzo różne skale czasowe 30

problemy sztywne szczególnie dotkliwy przypadek: równanie niejednorodne (bez rozwiązania analitycznego) załóżmy, że wartości własne A są ujemne Rozwiązanie będzie miało postać: stan ustalony wolnozmienny stan przejściowy (wszystkie zgasną) Na czym polega problem? : Rozwiązując problem numerycznie metodą jawną (Euler, RK2) musimy przyjąć krok czasowy Dt < 2/|l_max| aby uniknąć eksplozji rozwiązań nawet gdy wszystkie wyrazy z powyższej sumy w rozwiązaniu znikają 31

y2 – izotop matka wolno rozpadająca się na y1 y1 – izotop szybko rozpadający się, niejednorodność: dodatkowo pewna ilość jest w stałym tempie doprowadzana z zewnątrz y2(0)=1 y1(0)=0 l1=1/10 l2=1/10 000 bardzo wolno się rozpada [taka i większa rozpiętość lambd typowa również dla reakcji chemicznych spotykana również dla układów elektrycznych] przy zaniedbywalnej wielkości l2 y1=0.5 spełnia pierwsze równanie 32

automatyczna kontrola kroku czasowego dla jawnego RK2 z krokiem czasowym ustawianym przez ekstrapolację Richardsona l1=1/10 l2=1/10 000 tol=0.001 zęby: zaakceptowane błędy y Dt t t tol=0.00001 w obydwu przypadkach Dt tylko chwilowo przekracza krytyczną wartość 2/(1/10)=20 y t 33

RK4 2.78 / l1 34

stały krok, bardzo dłuuugi Zastosujmy metodę A-stabilną = wzór trapezów (p=2) stały Dt=200 Wzór trapezów stały krok, bardzo dłuuugi y nic złego się nie dzieje ze stabilnością w stanie „ustalonym” t 35

tol=0.01 kropki -tam gdzie postawiony krok Wzór trapezów i krok automatycznie dobierany przez ekstrapolację Richardsona tol=0.01 kropki -tam gdzie postawiony krok y y t t raptem 10 kroków i załatwione! zamiast 104 kroków RK4 Krok czasowy – zmienność 4 rzędów wielkości. 36

trapezy (najdokładniejsza metoda A-stabilna spośród wielokrokowych) z tolerancją 0.00001 maksymalnie parę tysięcy Dt y poziom jawnych RK t t metoda trapezów: jako A-stabilna radzi sobie nieźle z doborem kroku czasowego w problemach sztywnych – ale jest stosunkowo mało dokładna dokładniejsza A-stabilna pozwoliłaby stawiać jeszcze dłuższe kroki niestety = dokładniejszej A-stabilnej tej w klasie metod (liniowe wielokrokowe) nie ma dlatego : niejawne metody RK (jednokrokowe, nieliniowe) 37

trapezy z tolerancją 0.00001 (najdokładniejsza metoda A-stabilna spośród wielokrokowych) Dt y maksymalnie parę tysięcy t t maksymalnie kilkadziesiąt tysięcy Dt y niejawna dwustopniowa metoda RK (rzędu 4) z tolerancją 0.00001 (A-stabilna) t t 38

dla dużych t – rozwiązanie ustalone u(t)=cos(t) Mówimy, że RRZ jest problemem sztywnym gdy: Problem jest charakteryzowany różnymi skalami czasowymi. Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. Metody jawne się nie sprawdzają. Następny przykład: sztywny problem w pojedynczym równaniu: dla dużych t – rozwiązanie ustalone u(t)=cos(t) dwie bardzo różne skale czasowe 1) rozwiązania ustalonego okres 2pi 2) skala czasowa tłumienia „odchylenia od stanu ustalonego” exp(-100 t) – czasowa stała zaniku 0.01

rozwiązanie: „stacjonarne” u(t)=cos(t) z u(0)=2 rozwiązanie: „stacjonarne” u(t)=cos(t) jawny schemat Eulera Stały krok czasowy: rozpoznajemy ograniczenie: Dt < 2/|100|

dt=0.1 dt=0.2 dt=0.5 niejawny schemat Eulera – krok stały tutaj: startowane od warunku u(0)=1

wyniki do uzyskania na laboratorium start u(0)=2,tolerancja 1e-2 niejawny, jawny, cos (t) tol1e-2 niejawny akceptowane dt jawny akceptowane dt tol1e-3 niejawny Euler tolerancja 1e-3 niejawny, jawny, cos (t) tol 1e-6 gdy wymagana b. duża dokładność niejawny stawia równie krótkie kroki co jawny, obydwie metody tego samego rzędu dokładności akceptowane dt t

u u t t następny przykład: równanie swobodnego oscylatora van der Pola [historycznie = odkrycie deterministycznego chaosu w lampach firmy Philips aperiodyczne oscylacje przy periodycznym wymuszeniu ] (l=0 = zwykły o. harmoniczny) jawny RK4 = zmienny krok czasowy l=100 l=1 punkt u(t) policzony = krzyż po lewej: krzyże położone rozsądnie w porównaniu ze zmiennością rozwiązania po prawej: problem sztywny gładkie rozwiązanie a krzyże się zlewają u u t t

u t równanie: czasem sztywne czasem nie przydałoby się narzędzie do wykrywania sztywności np. dla podjęcia decyzji: tam gdzie sztywność = schemat niejawny tam gdzie nie = schemat jawny (tańszy) u t

Detekcja sztywności dla problemu nieliniowego (dla liniowego = wystarczy rozwiązać problem własny macierzy układu równań) układ N równań (u,f-wektory) w chwili t rozwiązanie u*(t) rozwiązanie chwilę później opisane przez odchylenie du(t) od u* u(t)= u*(t) + du(t) linearyzacja: zakładamy, że odchylenie małe, rozwijamy f(t,u) względem u wokół f(t,u*): [Taylor dla wektora] macierz Jakobiego [N na N]

+B problem zlinearyzowany B bez znaczenia dla stabilności rozwiązać problem własny A: dostaniemy wartości własne li: Aby rachunek się powiódł: Dt li musi leżeć w regionie stabilności używanej metody dla wszystkich i. Jeśli duża rozpiętość l : problem będzie sztywny.

Przykład: nieliniowy układ równań z warunkowo występującą sztywnością jeśli druga składowa u urośnie – macierz prawie diagonalna z szerokim zakresem wartości własnych - sztywność

Przykład detekcja sztywności dla: oscylatora van der Pola wartości własne:

niebieskie i czarne: części rzeczywiste wartości własnych l=1 l=100 w w t t jawny RK +automat dt dt dt t t

jawny RK +automat dt l=1 l=100 w w t t dt dt t t u(t) u(t) t

2) do metod niejawnych RK Metody RK – własności tabel Butchera 1)do regionów stabilności jawnych RK 2) do metod niejawnych RK ogólna w wersji ogólnej (niejawnej = sumowanie do s) dla metod jawnych

jeśli f=0 to un=un-1 Metoda musi być dokładna dla rozwiązania stałego: w przeciwnym wypadku powstanie błąd lokalny O(Dt) (metoda nie będzie zbieżna zerowy rząd zbieżności ) jeśli f=0 to un=un-1 to mamy zawsze podobnie, jeśli rząd zbieżności 1 (jak Euler) lub więcej = wynik dokładny dla funkcji liniowej f=1 np RK4

rozwiązania pośrednie = mniej dokładne niż wynik końcowy, ale: zażądajmy aby rozwiązania pośrednie Ui (dla chwili tn-1+ciDt) były rzędu zbieżności pierwszego (nie gorsze niż Euler). Mają działać dokładnie dla f=1 i rozwiązania u=D+t, co daje: u(t+dt)=u(t)+dt dla RK4: 1/2 1 1/6 1/3

l=1 poznajemy metoda RK rzędu dokładności p jeśli działać będzie dokładnie dla wielomianów stopnia p z rozwiązaniem: wstawić dla l=1,2,...,p l=1 poznajemy 1/2 1 1/6 1/3 Zastosowanie do tabeli Butchera RK4: ½= 1/6 *0 +1/3*1/2+1/3*1/2+1/6*1=3/6 1/3= 1/3 * ¼ +1/3 * ¼+1/6=2/6 ¼=1/3*1/8+1/3*1/8+1/6=1/12+1/6=3/12 dla l=5 prawa strona= 0.20833 warunki tego typu są konieczne, ale nie wystarczające do wyznaczenia całej tabeli B. można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody.

można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody. [zapisujemy dla ogólnej, tj. ewentualnie niejawnej RK] u’= u (1) (2) w notacji wektorowej z oznaczeniami: z (2) eliminujemy U wstawiamy do (1)

zrównując wyrazy tego samego rzędu w Dt dokładne rozwiązanie u(t)= exp(t) un= exp(Dt)un-1 u’= u dokładne: RK: zrównując wyrazy tego samego rzędu w Dt dla metody RK rzędu dokładności p czyli dla k=1,2,..,p

k=1 k=2 dla k=1,2,..,p wcześniej dowiedzieliśmy się, że oraz dla l=2 da wzór po lewej (zał. że pośrednie min rzędu 2) nowe niezależne warunki dostaniemy dla k>2

u’= lu stabilność bezwzględna jawnych metod RK z oznaczeniem z=lDt dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

u’= lu stabilność bezwzględna jawnych metod RK z oznaczeniem z=lDt dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

u’= lu stabilność bezwzględna jawnych metod RK z oznaczeniem z=lDt dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p macierz A dla jawnych dolna trójkątna bez diagonali dla m  s dlatego: - możemy urwać drugą sumę współczynnik wzmocnienia dla jawnych RK jest wielomianem

czyli dla p  4 druga suma znika, mamy dokładnie: rząd dokładności liczba stopni (odsłon) metody zamiast  Liczba kroków a rząd zbieżności jawnych metod RK: rząd p 1 2 3 4 5 6 7 8 minimalna liczba odsłon s 1 2 3 4 6 7 9 11 czyli dla p  4 druga suma znika, mamy dokładnie: stąd współczynnik wzmocnienia dla RK1,RK2,RK3 i RK4 rozwiązanie dokładne u=exp(lt) RK dokładności p dokładnie odtwarza pierwsze p wyrazów rozwinięcia Taylora rozwiązania dokładnego

nie większym niż 4 jest niezależny od wyboru a,b,c ! Stabilność bezwzględna RK ponadto: dla p4 mamy dla stabilności bezwzględnej: wniosek: region stabilności bezwzględnej jawnych metod RK o rzędzie dokładności nie większym niż 4 jest niezależny od wyboru a,b,c ! w szczególności dwie poznane metody rzędu drugiego: mają ten sam region stabilności

rejony bezwzględnej stabilności jawnych metod RK w s-odsłonach dla danego s – rejony identyczne dla wszystkich wariantów dt Im(l) zakres stabilności rośnie z rzędem dokładności zobaczymy, że przeciwnie niż dla liniowych formuł wielokrokowych! RK2 Euler dt Re(l) rysunek skopiowany z Quarteroni: Numerical Mathematics RK3/RK4 obejmują również fragment Re(l)>0 dla rzeczywistego l region stabilności: dtl RK1 (-2,0) RK2 (-2,0) RK3 (-2.51,0) RK4 (-2.78,0)