GMO Metody otrzymywania.

Slides:



Advertisements
Podobne prezentacje
Biotechnologia zespół technologii, służących do wytwarzania użytecznych, żywych organizmów lub substancji pochodzących z organizmów lub ich części. Inaczej.
Advertisements

WEKTORY WYSPECJALIZOWANE
Uniwersytet Warszawski
GENOMIKA FUNKCJONALNA U ROŚLIN
Klonowanie polega na wytworzeniu kopii całego organizmu wielokomórkowego na podstawie materiału genetycznego znajdującego się w DNA pojedynczej komórki.
Co to są drobnoustroje?.
Zmienność organizmów i jej przyczyny
Przygotowanie wektora do klonowania.
Alternatywne źródła energii
WIRUSY.
Budowa komórki bakteryjnej
Kwasy nukleinowe jako leki
Biotechnologiczne metody ochrony upraw rolnych
Chcę żyć ekologicznie.
Uniwersytet Warszawski
DZIEDZICZENIE POZAJĄDROWE
PROAPOPTOTYCZNA TERAPIA GENOWA NOWOTWORÓW
Biokomputer.
Współczesne zagrożenia zdrowia
CHOROBY GENETYCZNE CZŁOWIEKA.
Podstawy inżynierii genetycznej i jej zastosowanie
Geny i genomy Biologia.
Klonowanie.
Podsumowanie – wykład 5 Transformacje komórek roślinnych – rośliny GMO
Technologie rekombinacji DNA Organizmy transgeniczne
DNA- materiał genetyczny komórek. Replikacja DNA.
Inżynieria genetyczna - Szanse czy zagrożenia?
Transport przez błony komórki.
Wiadomości ogólne o komórkach i tkankach
Biologia semestr I odnośniki do stron internetowych
mgr inż. Karolina Makieła dr hab. Piotr Jonczyk
Klonowanie Patryk Wąsowski IIb.
Odporność organizmu.
Organizmy zmodyfikowane genetycznie
ZASTOSOWANIE GENETYKI W FARMACJI
KLonowanie.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Biotechnologia.
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
CZYNNIKI RYZYKA Spożywanie pokarmów bogatych w tłuszcze nasycone i siedzący tryb życia doprowadziły do wzrostu ryzyka rozwoju chorób układu sercowo-naczyniowego,
ZASTOSOWANIE GENETYKI W ROLNICTWIE
POLIMERAZY RNA Biorą udział w syntezie RNA na matrycy DNA- transkrypcji Początek i koniec transkrypcji regulują sekwencje DNA i wiążące się do nich białka.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Regulacja ekspresji genu
Energia w EKOSYSTEMIE Martyna Liszka kl. III SD.
Tworzenie konstruktów ekspresyjnych siRNA. Metody wprowadzania siRNA siRNA Vector [DNA]
WIRUSY.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
forma pośrednia między materią ożywioną, a nieożywioną
KLONOWANIE W NAUCZANIU KOŚCIOŁA
Inżynieria genetyczna korzyści i zagrożenia
Biotechnologia a medycyna
Zmiany w informacji genetycznej
1.26. Osiągnięcia inżynierii genetycznej
2.22. Procesy i zasady kodowania informacji genetycznej
Martyna Furtak kl. 1 TT. (Genetically Modified Organisms), to organizmy których geny zostały celowo zmienione przez człowieka. Według art. 3 ustawy z.
G.M.O.- korzyści i zagrożenia
Biologia molekularna – dziedzina biologii zajmująca się badaniem struktury i funkcji makromolekuł, przede wszystkim białek i kwasów nukleinowych Makromolekuła.
Joanna Szczypta I TE. Organizmy zmodyfikowane genetycznie w skrócie GMO (ang. Genetically Modified Organisms) to organizmy, których geny zostały celowo.
ORGANIZMY ZMODYFIKOWANE GENETYCZNIE
DYFUZJA.
1.22. Odczytywanie informacji genetycznej – przepis na białko
Opracowała Bożena Smolik Konsultant Arleta Poręba-Konopczyńska
Wykonała: Barbara Minczewska
Biotechnologia tradycyjna. Czym jest biotechnologia?  Biotechnologia to interdyscyplinarna dziedzina nauki zajmująca się wykorzystaniem procesów biologicznych.
GMO.
mitoza i mejoza; cykl komórkowy;
1.23. Podziały komórki i przekazywanie informacji genetycznej
Klonowanie Organizmów Kornelia Podrażka Kacper Domian KL. I D.
Zapis prezentacji:

GMO Metody otrzymywania

Czym właściwie jest GMO? Organizm modyfikowany genetycznie to organizm inny niż organizm człowieka, w którym materiał genetyczny został zmieniony w sposób nie zachodzący w warunkach naturalnych wskutek krzyżowania lub naturalnej rekombinacji, w szczególności przy zastosowaniu: art. 3 ustawy z dnia 22 czerwca 2001 r. o organizmach genetycznie zmodyfikowanych

- technik rekombinacji DNA z użyciem wektorów, w tym tworzenia materiału genetycznego poprzez włączenie do wirusa, plazmidu lub każdego innego wektora cząsteczek DNA wytworzonych poza organizmem i włączenie ich do organizmu biorcy, w którym w warunkach naturalnych nie występują, ale w którym są zdolne do ciągłego powielania,

METODA OTRZYMYWANIA GMO Z UŻYCIEM WEKTORA Metoda otrzymywania GMO z użyciem wektorów polega na tworzeniu zmodyfikowanego materiału genetycznego, włączaniu tych cząsteczek DNA do wirusa, plazmidu lub innego wektora, który przenosi je do organizmu biorcy i włącza do jego materiału genetycznego. W warunkach naturalnych ten materiał genetyczny nie występuje w organizmie biorcy, ale po włączeniu jest w nim powielany.

MECHANIZM WPROWADZENIA ZMODYFIKOWANEGO GENU 1) wybrany, ściśle zdefiniowany fragment DNA będący genem odpowiedzialnym za biosyntezę określonego białka, a przez to pożądanej cechy, jest wycinany z genomu „dawcy" za pomocą enzymów restrykcyjnych lub syntetyzowany chemicznie; 2) fragment ten jest łączony z DNA odpowiedniego wektora, czyli organizmu, który ma zdolność do przenoszenia DNA do komórek innych organizmów w sposób umożliwiający jego powielenie. Na tym etapie dołączany jest również gen markerowy umożliwiający identyfikację i wyodrębnianie GMO 3) fragment DNA przenoszony przez wektor zostaje wbudowany w DNA biorcy, a zatem organizm biorcy rozpoczyna produkcję substancji w nim zakodowanych oraz nabywa cechy przeniesione przez gen dawcy

WEKTOR GENETYCZNY Wektor genetyczny – niewielka cząsteczka DNA , służąca do wprowadzania żądanego odcinka DNA do komórki biorcy. Stosując odpowiednie wektory można spowodować wydajną ekspresję genów (proces, w którym informacja genetyczna zawarta w genie zostaje odczytana i przepisana na jego produkty, które są białkami lub różnymi formami RNA) w nich zawartych lub integrację sekwencji przenoszonej na wektorze do genomu biorcy , jak również przeprowadzić klonowanie genu . Takie wektory służą do wprowadzania obcego DNA do komórek i utrzymywania go w kolejnych podziałach komórkowych. Istnieją także wektory bifunkcjonalne , które mogą egzystować w co najmniej dwóch odmiennych organizmach (np. : w drożdżach i bakteriach).

RODZAJE WEKTORÓW Ważniejsze rodzaje wektorów wykorzystywanych w genetyce to: wektory plazmidowe, wektory fagowe (wykorzystujące bakteriofagi), kosmidy,  wektory ekspresyjne, wektory wahadłowe, wektory sekrecyjne, sztuczne chromosomy drożdżowe (YAC), sztuczne chromosomy bakteryjne (BAC) i sztuczny ludzki chromosom (HAC).

RODZAJE WEKTORÓW Plazmid – cząsteczka DNA występująca w komórce poza chromosomem i zdolna do autonomicznej (niezależnej) replikacji. Do wprowadzenia plazmidów do wnętrza komórki bakteryjnej przydatna jest metoda zwana transformacją. Polega ona na osłabieniu ściany komórkowej bakterii w celu uczynienia jej przepuszczalną dla plazmidu. Wówczas można do komórki wprowadzić plazmidy, które w czasie podziału przekazywane są do komórek potomnych. Hodowla mikroorganizmu na odpowiednim podłożu pozwoli wyselekcjonować te komórki, które zawierają zrekombinowany plazmid. 1.Chromosom bakteryjny 2.plazmidy

RODZAJE WEKTORÓW Kosmidy –tworzy się łącząc plazmidy z sekwencją cos bakteriofaga lambda (bakteriofag zawierający dwuniciowy DNA, infekujący bakterie Escherichia coli). Dzięki temu wektor tego typu zyskuje właściwości charakterystyczne zarówno dla plazmidu jak i dla faga. Dzięki kosmidom możliwe jest klonowanie długich fragmentów DNA , co nie jest możliwe przy użyciu plazmidów.

RODZAJE WEKTORÓW Wektor ekspresyjny – rodzaj wektora genetycznego, który zawiera wszystkie elementy typowe dla wektora klonującego, a ponadto silny promotor (odcinek DNA, położony zazwyczaj powyżej sekwencji kodującej genu, który zawiera sekwencje rozpoznawane przez polimerazę* RNA zależną od DNA), który pozwala na bardzo wydajne produkowanie białka . *polimeraza- enzym wytwarzający nić RNA na matrycy DNA w procesie zwanym transkrypcją.

RODZAJE WEKTORÓW Wektor wahadłowy, inaczej bifunkcjonalny –może utrzymać się i replikować w dwóch rodzajach komórek, przy czym z reguły bierze się pod uwagę możliwość przeniesienia wektora z komórki prokariotycznej do eukariotycznej lub vice versa. wektory sekrecyjne- umożliwiające ekspresję i sekrecję(wydzielanie), kodowanego przez wprowadzony gen, białka. sztuczne chromosomy drożdżowe (YAC)- zrekombinowany chromosom drożdży używany w inżynierii genetycznej, jako wektor do klonowania DNA. Zaletą wektora YAC jest zdolność do przyjęcia bardzo dużych fragmentów DNA do klonowania, co, w przeciwieństwie do użytkowania jako wektorów np. plazmidów, czy wektorów fagowych, umożliwia klonowanie całych ludzkich genów. Sztuczny chromosom bakteryjny (BAC) jest zrekombinowanym DNA bazującym na DNA plazmidowym bakterii pałeczki okrężnicy, używanym w inżynierii genetycznej, jako wektor do klonowania DNA. Wykazuje zdolność do przyjęcia fragmentów DNA do klonowania czyli znacznie mniej niż sztuczny chromosom drożdżowy (YAC). Niemniej jednak BAC wykazuje większą stabilność insertu oraz łatwość operacji namnażania i izolacji klonu.

- technik stosujących bezpośrednie włączenie materiału dziedzicznego przygotowanego poza organizmem, a w szczególności: mikroiniekcji, makroiniekcji i mikrokapsułkowania,

MIKROINJEKCJA Metoda polegająca na bezpośrednim wstrzyknięciu za pomocą cienkiej szklanej igły materiału do wnętrza komórki docelowej. Komórka do której wprowadzone mają zostać cząsteczki zostaje unieruchomiona na pipecie pomocniczej, a za pomocą szklanej, ostro zakończonej igły o średnicy od 0,5 do 5 μm przebita zostaje błona komórkowa i materiał zostaje wtłoczony do wnętrza komórki. Technika ta umożliwia ponadto bezpośrednie umieszczenie materiału w jądrze komórkowym, co ma szczególne znaczenie przy wprowadzaniu DNA. Możliwa jest wtedy integracja transgenów z genomem komórki.

Metoda wykonania Mikroiniekcja może być wykonywana za pomocą specjalnego mikromanipulatora połączonego z odwróconym mikroskopem. Hydrauliczne połączenie ze strzykawką umożliwia bardzo precyzyjne ruchy ograniczając do minimum ryzyko uszkodzenia komórki. Istnieją trzy systemy aparaturowe do prowadzenia mikroiniekcji: • Manualny w którym zarówno położenie pipety, jak i ciśnienie konieczne do wstrzyknięcia substancji wprowadzanej obsługiwane jest ręcznie. System jest sprzężony z pojedynczą strzykawką. • Półautomatyczny – w którym nadal konieczne jest ręczne naprowadzanie igły na komórkę, jednakże wartość ciśnienia i czas iniekcji kontrolowany jest automatycznie poprzez pojedynczy przycisk, na podstawie określonych wartości. • Układ automatyczny – komórki mogą zostać immobilizowane w określonych punktach matrycy, określone zostają punkty startu natomiast iniekcja zostaje przeprowadzona za pomocą mikrorobotów. System podlega kontroli komputera, który przemieszcza strzykawkę w odpowiednie miejsca na matrycy dokonując iniekcji.

Schemat

Metoda wykonania Mikroiniekcja może być wykonywana za pomocą specjalnego mikromanipulatora połączonego z odwróconym mikroskopem. Hydrauliczne połączenie ze strzykawką umożliwia bardzo precyzyjne ruchy ograniczając do minimum ryzyko uszkodzenia komórki. Istnieją trzy systemy aparaturowe do prowadzenia mikroiniekcji: • Manualny w którym zarówno położenie pipety, jak i ciśnienie konieczne do wstrzyknięcia substancji wprowadzanej obsługiwane jest ręcznie. System jest sprzężony z pojedynczą strzykawką. • Półautomatyczny – w którym nadal konieczne jest ręczne naprowadzanie igły na komórkę, jednakże wartość ciśnienia i czas iniekcji kontrolowany jest automatycznie poprzez pojedynczy przycisk, na podstawie określonych wartości. • Układ automatyczny – komórki mogą zostać immobilizowane w określonych punktach matrycy, określone zostają punkty startu natomiast iniekcja zostaje przeprowadzona za pomocą mikrorobotów. System podlega kontroli komputera, który przemieszcza strzykawkę w odpowiednie miejsca na matrycy dokonując iniekcji.

MAKROINJEKCJA Wstrzykiwanie DNA w okolice komórek o dużej aktywności podziałowej i stosunkowo przepuszczalnych ścianach

MIKROKAPSUŁKOWANIE Mikrokapsułkowanie polega na utworzeniu kapsułek, w których wyróżniono dwie warstwy; pierwszą jest rdzeń, który może występować w postaci gazowej, ciekłej lub stałej, natomiast drugą warstwę stanowi otoczka utworzona z żelowego polimeru lub półprzepuszczalnej membrany. W metodzie tej możliwe jest utworzenie kilku warstw otoczki, których zadaniem jest lepsza ochrona materiału w rdzeniu przed oddziaływaniem czynników zewnętrznych.

- metod nie występujących w przyrodzie dla połączenia materiału genetycznego co najmniej dwóch różnych komórek, gdzie w wyniku zastosowanej procedury powstaje nowa komórka zdolna do przekazywania swego materiału genetycznego odmiennego od materiału wyjściowego komórkom potomnym.

METODY BEZ WYKORZYSTANIA WEKTORA Metody bez wykorzystania wektora polegają na bezpośrednim wprowadzeniu fragmentu DNA (genu) do jądra komórki rośliny. Np. za pomocą mikromanipulatora (pod mikroskopem, podobnie jak przy zapłodnieniu in- vitro), mikrowstrzeliwania – czyli strzelanie we fragment rośliny mikroskopijnymi cząsteczkami metali z naniesionym na nich fragmentem DNA – metoda na „chybił-trafił” – wystrzela się bardzo dużo cząsteczek, część z nich wleci do jądra komórki rośliny i niesiony fragment DNA zintegruje się z genomem rośliny. Modyfikacja poprzez mikrowstrzeliwanie jest najczęściej stosowaną metodą modyfikacji roślin jednoliściennych (zboża). Metodami bez wektora modyfikuje się rośliny jednoliścienne – czyli zboża (gł. kukurydzę). Metody bez wektora są bardziej pracochłonne, trudniejsze i droższe.

Otrzymywanie Aby otrzymany organizm był transgeniczny, należy do niego wprowadzić kawałek DNA, który pochodzi od obcego organizmu. Może on zostać wycięty z większego fragmentu DNA, przy użyciu enzymów restrykcyjnych. Tak przygotowany materiał jest wprowadzany do genomu zwierzęcia bądź rośliny. Samo wprowadzenie materiału genetycznego nie jest łatwe, a technika zależy od tego czy modyfikowany jest organizm zwierzęcy czy roślinny.

Dziękujemy za uwagę! Praca wykonana przez: Z klasy III dg - Karolinę Stryjek - Michała Jankowskiego - Janusza Ozdowskiego oraz - Grzegorza Królaka Z klasy III dg

Bibliografia http://www.izba-ochrona.pl/ http://www.biotechnolog.pl/gmo.htm http://www.youtube.com/watch?v=PDSjP091WI0 http://www.youtube.com/watch?v=CSbn8I82usU http://pl.wikipedia.org/wiki/Organizm_zmodyfikowany_genety cznie http://isap.sejm.gov.pl/DetailsServlet?id=WDU20010760811