Wielościan foremny (bryła platońska) – wielościan spełniający następujące trzy warunki:

Slides:



Advertisements
Podobne prezentacje
Spis treści Geometria Algebra Koło, okrąg Zbiory liczbowe
Advertisements

Ostrosłupy SAMBOR MARIUSZ O A B C D E F H R S α S H h r R a S b h H a
FIGURY PRZESTRZENNE.
WIELOŚCIANY FOREMNE CZYLI BRYŁY PLATOŃSKIE
Opracowanie Agnieszka Skibińska Bożena Hołownia Maria Pera
Wielościany foremne siatki.
sześcian, prostopadłościan, graniastosłup i ostrosłup
Dane INFORMACYJNE Nazwa szkoły: III LO W OSTROWIE WIELKOPOLSKIM
Dane INFORMACYJNE: Nazwa szkoły: Zespół Szkół Morskich ID grupy: 97/80_MF_G1 Opiekun: Krystyna Sułek Kompetencja: Matematyczno-fizyczna Temat projektowy:
Wielościany platońskie i archimedesowe
Wielościany foremne Prezentację przygotował Krystian Misiurek I”b”
BRYŁY PLATOŃSKIE.
Bryły geometryczne Konrad Wawrzyńczak kl. IIIa Bryły obrotowe
GrAnIaStOsŁuPy PrOsTe.
Graniastosłupy.
Prezentacja wykonana przez mgr Katarzynę Kostrowską
Wycieczka w n-ty wymiar
WYKONAŁY: ANNA DEDA JOANNA KANIA KLASA I „a” ZSZ SPRZEDAWCA
Wielościany foremne Wielościan - bryła geometryczna ograniczona przez tak zwaną powierzchnię wielościenną, czyli utworzoną z wielokątów o rozłącznych wnętrzach,
Wielościany foremne Bryły platońskie.
BRYŁY PLATOŃSKIE – MATEMATYCZNE BOMBKI NA CHOINKĘ
Wielościany.
Graniastosłupy i Ostrosłupy
Temat: Okrąg wpisany i opisany na wielokącie foremnym.
Bryły, które cieszą wzrok i pobudzają wyobraźnię
Bryły platońskie.
Wykonała: mgr Renata Ściga
Definicje matematyczne - geometria
Bryły złożone-cuda architektury
Sieć Krystalograficzna Kryształów
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
w Gimnazjum w Zespole Szkół
Graniastosłupy i ostrosłupy
Pole i objętość graniastosłupów i ostrosłupów- powtórzenie wiadomości
Graniastosłupy.
Graniastosłupy.
Poznajemy graniastosłupy - prezentacja
Figury przestrzenne.
PRZEKROJE WIELOŚCIANÓW
Bryły archimedesowskie i platońskie
Każdy z tych przedmiotów jest modelem figury przestrzennej
FIGURY GEOMETRYCZNE.
Wykonali: Magdalena Pędrak Weronika Stalmach Ireneusz Tabaszewski
Przygotowała Patrycja Strzałka.
Bryły geometryczne Wielościany Wielościany_foremne Bryły obrotowe
Wielościany Gwiaździste
Opracowała: Iwona Kowalik
-Wielościany Catalana są dualne do brył Archimedesa
Wielokąty foremne.
Szkoła Podstawowa nr 29 w Lublinie, kl. VIa
WIELOŚCIANY FOREMNE Edyta Przedwojewska.
sześcian, prostopadłościan, graniastosłup i ostrosłup
Bryły.
Uwaga !!! Aby móc przemieszczać się między poszczególnymi slajdami naciśnij : Np.: „Następny slajd”, nazwę wybranych brył, np.: Graniastosłupy lub figurę,
Wielościany platońskie i archimedesowe
Opracowały: Alicja Piślewska i Roma Kwiatkiewicz
B R Y Ł Y.
ACH, TEN SZEŚCIAN! Martyna Nytko Remigiusz Makuch Marek Pustelnik
BRYŁY.
Platon ( p.n.e.) Był twórcą systemu filozoficznego zwanego idealizmem platońskim. Uważa się, że to od Platona zaczyna się filozofia rozumiana jako.
Rozpoznawanie brył przestrzennych
PODSTAWY STEREOMETRII
Wstęp Tą krótką prezentacją chcemy Wam pokazać jak ważna i przydatna może być matematyka dla każdego z nas w naszym codziennym życiu.
To są przykładowe wielokąty foremne. Po czym je poznajemy? Wielokąty foremne ze wzrostem n coraz bardziej przypominają koło.
Opis graniastosłupa. Siatka graniastosłupa.
Wykonały: Martyna Gunia & Klaudia Francikiewicz. Wielościan gwiaździsty jest to rodzaj wielościanu zbudowanego z kilku innych wielościanów, o części centralnej.
Graniastosłup jest to wielościan, którego wszystkie wierzchołki są położone na dwóch równoległych płaszczyznach, zwanych podstawami graniastosłupa i.
BRYŁY PLATOŃSKIE WYKONAŁ MIKOŁAJ MATUSZEWSKI UCZEŃ KLASY 2B
PARKIETAŻE PARKIETAŻE PARKIETAŻE.
Przemysław Socha Marcel Niedźwiecki
Zapis prezentacji:

Wielościan foremny (bryła platońska) – wielościan spełniający następujące trzy warunki: -ściany są przystającymi wielokątami foremnymi, -w każdym wierzchołku zbiega się jednakowa liczba ścian, -jest bryłą wypukłą. Wielościany foremne są szczególnym przypadkiem wielościanów półforemnych (archimedesowskich), w których foremne ściany nie muszą być identyczne (tj. wzajemnie przystające).

Wielościany foremne nazywane są także bryłami platońskimi, gdyż Platon jako pierwszy odnotował fakt istnienia ściśle określonej ich liczby. Do jego czasów znano jednak jedynie cztery z nich. Sam Platon, pisząc Timajosa, nie wspomina jeszcze o dwunastościanie. Ten ostatni został odkryty dopiero przez Teajtetosa (ucznia Platona). Bryły platońskie poruszały wyobraźnię wielu myślicieli i filozofów. Były też wykorzystywane przez nich w rozważaniach kosmologicznych. W dialogu Timajos Platon pisał, że każdy żywioł można utożsamić z jedną z doskonałych brył (ogień - czworościan, ziemia - sześcian, powietrze - ośmiościan, woda - dwudziestościan). Po odkryciu dwunastościanu foremnego włączył go do swojego systemu jako symbol całego wszechświata. Niemal 2 tysiące lat później, w XVII wieku Kepler użył wielościanów foremnych do swojego modelu kosmologicznego. Jeśli bowiem na sferze o promieniu orbity Merkurego opisać ośmiościan a na nim opisać następną sferę, to jej promień odpowiadać będzie promieniowi orbity Wenus. Jeśli na tej drugiej sferze opisać dwudziestościan, a na nim kolejną trzecią sferę, to jej promień odpowiada promieniowi orbity Ziemi. I tak kolejno dla następnych wielościanów foremnych i planet: dwunastościan – Mars, czworościan – Jowisz, sześcian - Saturn. Było to pierwsze z odkrytych przez Keplera praw ruchu planet, nie uznane wszakże za prawo natury w dzisiejszym rozumieniu nauki. Odkryta prawidłowość utwierdziła Keplera w głębokim przekonaniu, że Bóg jest matematykiem.

Czworościan foremny (gr Czworościan foremny (gr. tetraedr) – czworościan, którego ściany są identycznymi trójkątami równobocznymi. Jeden z pięciu wielościanów foremnych. Posiada 6 krawędzi i 4 wierzchołki. Czworościan foremny jest przykładem trójwymiarowego sympleksu. Czworościan foremny jest dualny do samego siebie.

Sześcian (właściwie sześcian foremny, inaczej heksaedr) – wielościan foremny o sześciu ścianach w kształcie identycznych kwadratów. Posiada dwanaście krawędzi, osiem wierzchołków i 4 przekątne. Ścinając odpowiednio wierzchołki sześcianu otrzymujemy wielościan półforemny o nazwie sześcian ścięty. Sześcian jest także szczególnym przypadkiem graniastosłupa prawidłowego, hipersześcianu (w przestrzeni trójwymiarowej), prostopadłościanu i romboedru.

Ośmiościan foremny (inaczej oktaedr) - to wielościan foremny o 8 ścianach w kształcie identycznych trójkątów równobocznych. Ma 12 krawędzi, 6 wierzchołków i 3 przekątne. Ścinając wierzchołki ośmiościanu otrzymujemy wielościan półforemny o nazwie ośmiościan ścięty. Ośmiościan foremny jest także antygraniastosłupem. Ośmiościan foremny ma cztery pary ścian do siebie równoległych.

Dwunastościan foremny (in Dwunastościan foremny (in. dodekaedr) to wielościan foremny o 12 ścianach w kształcie przystających pięciokątów foremnych. Posiada 30 krawędzi i 20 wierzchołków. Ścinając wierzchołki dwunastościanu otrzymujemy wielościan półforemny o nazwie dwunastościan ścięty.

Dwudziestościan foremny (in Dwudziestościan foremny (in. ikosaedr) - to najbardziej złożony wielościan foremny o 20 ścianach w kształcie przystających trójkątów równobocznych. Posiada 30 krawędzi i 12 wierzchołków oraz 15 płaszczyzn symetrii. Ścinając wierzchołki dwudziestościanu otrzymujemy wielościan półforemny o nazwie dwudziestościan ścięty.

Platon (427 p. n. e. -347 p. n. e. ) - grecki filozof Platon (427 p.n.e.-347 p.n.e.) - grecki filozof. Jako pierwszy odnotował fakt istnienia ściśle określonej liczby wielościanów foremnych. Do jego czasów znane były tylko cztery z nich (nie znano dwunastościanu - został on odkryty przez Teajtetosa, ucznia Platona) . Platon przyporządkował każdej z doskonałych brył jeden z żywiołów: ogień - czworościan, ziemia - sześcian, powietrze - ośmiościan, woda - dwudziestościan. Po odkryciu dwunastościanu foremnego włączył go do swojego systemu jako symbol wszechświata.