Obserwatory zredukowane

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Rozdział V - Wycena obligacji
Wykład no 11.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Przykładowe zastosowania równania Bernoulliego i równania ciągłości przepływu 1. Pomiar ciśnienia Oznaczając S - punkt spiętrzenia (stagnacji) strugi v=0,
RÓWNOWAGA WZGLĘDNA PŁYNU
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
Sterowanie – użycie obserwatorów pełnych
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wykład 22 Modele dyskretne obiektów.
Sterowanie – działanie całkujące
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
II Zadanie programowania liniowego PL
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
O ODPORNOŚCI KONWENCJONALNEGO OBSERWATORA LUENBERGERA ZREDUKOWANEGO RZĘDU Ryszard Gessing Instytut Automatyki Politechnika Śląska.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Obserwatory zredukowane Pełny lub n-tego rzędu obserwator (Luenberger’a) – redundancja informacyjna Pewna liczba zmiennych stanu dostępna poprzez zakładany pomiar wyjść Będziemy zakładali, jak poprzednio Przypadek ciągły Wyprowadzenie I Zakładamy: q mierzonych wyjść są liniowo niezależne – macierz C ma rząd q Zakładamy też: macierz C o wymiarze qxn ma postać lub można ją sprowadzić do postaci (przez przekształcenie podobieństwa – zmianę bazy)

Jeżeli opis systemu sterowanego nie jest początkowo w postaci różnej od podanej - przeprowadzamy transformację podobieństwa wybierając macierz T ’ tak, aby T było nieosobliwe ( miała macierz odwrotną)

Możliwy sposób wyboru macierzy T ’ czyli Dowód poprawności wyboru – z metody eliminacji Gausa - Jordana Związki wynikające z przekształcenia podobieństwa:

Dekompozycja Biorąc pod uwagę postać macierzy C można napisać równanie stanu w postaci

lub Równanie wyjścia staje się oczywiście tożsamością (tautologią) Przy czym pamiętamy Wystarczy teraz estymować tylko v (n-q – elementów)

jest dostępne pomiarowo, to również Idea rekonstrukcji Ponieważ jest dostępne pomiarowo, to również Wartość jest mierzalna Podane równania możemy tratować jako równania stanu i równania pomiarów, w których - wektor stanu - wektor wejścia - wektor wyjścia (pomiaru) Równanie stanu i pomiaru zredukowanego systemu piszemy w postaci Odpowiada to równaniom:

Budujemy pełny obserwator Luenbergera, ale rzędu n-q, który nazywamy obserwatorem zredukowanym Oznaczymy macierz wzmocnień obserwatora zredukowanego o wymiarze (n-q)xq Równanie stanu obserwatora zredukowanego przyjmujemy: Wyprowadzenie szczegółowej postaci obserwatora zredukowanego Bezpośrednio mierzy się y, występowanie pochodnej jest niekorzystne – wprowadza się zmienną

Podstawiając do ostatniego wyniku otrzymamy nowe równanie obserwatora zredukowanego lub

Odpowiada im schemat blokowy obserwatora zredukowanego Ponieważ v ma wymiar (n-q), więc również z ma wymiar (n-q) i jest dobrze określonym obserwatorem zredukowanym tego rzędu

Warunki dla obliczenia macierzy wzmocnień obserwatora zredukowanego Jak poprzednio definiujemy błąd rekonstrukcji obserwatora (błąd estymacji) Warunek dobrego estymatora Weźmy zredukowane równanie stanu systemu i początkowe równanie obserwatora zredukowanego Równanie dynamiki błędu obserwatora zredukowanego

Macierz stanu jednorodnego równania dynamiki błędu obserwatora Wymagana obserwowalność pary Lemat. Jeżeli para , to para też jest obserwowalna Twierdzenie. Mając dany liniowy stacjonarny system rzędu n, który posiada q liniowo niezależnych wyjść (pomiarów wyjść) i jest obserwowalny, można skonstruować obserwator rzędu (n-q) mający dowolne wartości własne

Przeprowadzona konstrukcja wyznacza jeden obserwator tego typu, który posiada jako macierz systemu Inne wyprowadzenia II. Można też założyć: macierz C o wymiarze qxn ma postać lub można ją sprowadzić do postaci (przez przekształcenie podobieństwa – zmianę bazy)

Wówczas, jeżeli opis systemu sterowanego nie jest początkowo w postaci różnej od podanej - przeprowadzamy transformację podobieństwa wybierając macierz T ’ tak, aby T było nieosobliwe ( miała macierz odwrotną)

Możliwy sposób wyboru macierzy T ’ czyli Dowód poprawności wyboru – z metody eliminacji Gausa - Jordana

Dekompozycja Biorąc pod uwagę inną postać macierzy C można teraz napisać równanie stanu w postaci

lub Wystarczy teraz estymować tylko v (n-q – elementów) Równanie wyjścia staje się oczywiście tożsamością (tautologią) Przy czym pamiętamy Wystarczy teraz estymować tylko v (n-q – elementów)

Zastosowana idea rekonstrukcji pozostaje taka sama i warunki dla obliczenia macierzy wzmocnień obserwatora zredukowanego wyprowadza się w analogiczny sposób Otrzymamy równanie obserwatora zredukowanego lub

Macierz systemu obserwatora przyjmie postać III. Można zrezygnować z „częściowo jednostkowej” postaci macierzy C o wymiarze qxn i założyć jedynie, że macierz C ma jedną z postaci a. b.

Weźmy przypadek a. Dekompozycja Biorąc pod uwagę postać macierzy C można teraz napisać równanie stanu w postaci

Pełny obserwator Nie ma potrzeby rekonstruować górnej składowej wektora stanu – zakładając nieosobliwość C1 można bowiem Dalej: zastosowana idea rekonstrukcji pozostaje taka sama i warunki dla obliczenia macierzy wzmocnień obserwatora zredukowanego wyprowadza się w analogiczny sposób

Macierz systemu obserwatora przyjmie postać

Obserwator zredukowany dla systemów z jednym wyjściem (system SISO) Przypadek ciągły Biorąc pod uwagę postać macierzy C Ograniczymy się do przypadku wyprowadzenia I Dekompozycja

Macierze A oraz B mają postać Macierze cT ma postać (lub sprowadzamy ją do postaci

Macierze wzmocnień obserwatora redukuje się do wektora i oznaczymy go Postępując jak poprzednio otrzymamy równanie obserwatora zredukowanego lub

Macierz systemu obserwatora przyjmie postać Projektowanie obserwatora zredukowanego dla systemów SISO gr określamy tak, aby macierz Fr miała n-1 wartości własnych, które spełniają postulowane równanie charakterystyczne

Możliwości I. bezpośrednio – porównanie wartości współczynników II. wykorzystanie postaci kanonicznej obserwowalności wówczas

Problem polega na znalezieniu takich, aby macierz miała wielomian charakterystyczny o postulowanej postaci Przywołując twierdzenie podane dla pełnego obserwatora i pamiętając o zmniejszeniu wymiaru o 1 oraz, że macierzy A odpowiada teraz A11

otrzymujemy rozwiązanie Zatem i równania obserwatora

III. macierz A w dowolnej postaci – wykorzystanie dualnego twierdzenia Ackermann’a Twierdzenie dualne Ackermann’a Jeżeli system jest obserwowalny i jeżeli wymaga się, aby obserwator n – tego rzędu (Luenbergr’a) posiadał wielomian charakterystyczny to należy wybrać macierz wzmocnień obserwatora o wartościach gdzie jest ostatnią kolumną odwrotnej macierzy obserwowalności i jest określona lub

Dualne twierdzenie Ackermann’a stosujemy systemu zredukowanego, czyli ogólnie do systemu rzędu n-q danego równaniem stanu (wyprowadzenie I) i wyjścia Zatem w twierdzeniu Ackermann’a należy podstawić

Przykład 1 (z W10): System jednowymiarowy Zaprojektować pełny obserwator stanu dla systemu, mający podwójna wartość własną w Opis w przestrzeni stanu

Ponieważ należy zbudować obserwator zredukowany dla Niech Ponieważ zatem system ma wymaganą postać dla wyprowadzenia I Ale nie jest w postaci kanonicznej obserwowalności – zastosujemy kolejno wyliczenie bezpośrednie i równanie dualne Ackermann’a Dekompozycja

Wektor redukuje się do skalara Postulowany wielomian charakterystyczny Macierz systemu obserwatora Wielomian charakterystyczny macierzy systemu obserwatora zatem Porównanie zatem

Równanie obserwatora Schemat blokowy systemu z obserwatorem

Dualne równanie Ackermann’a stosujemy do systemu zredukowanego Para oznacza tutaj Macierz obserwowalności Postulowany wielomian charakterystyczny zatem I podobnie jak poprzednio

Dziękuję za uczestnictwo w wykładzie i uwagę