Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Sterowanie – metody alokacji biegunów II
Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Mechanizm wnioskowania rozmytego
Badania operacyjne. Wykład 2
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Dwie podstawowe klasy systemów, jakie interesują nas
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Modele dyskretne obiektów liniowych
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Dwie podstawowe klasy systemów, jakie interesują nas
Wydział Elektroniki PWr AiR III r. Metody numeryczne i optymalizacja Dr inż. Ewa Szlachcic Wykład 3 Właściwe minimum lokalne: Funkcja f(x) ma w punkcie.
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Podstawy automatyki I Wykład /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność - odtwarzalność System ciągły System dyskretny Obserwowalność określa możliwość jednoznacznego określenia stanu początkowego systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia Znaczenie: znajomość stanu początkowego i wejścia systemu pozwala zrekonstruować całą trajektorię stanu w oparciu o równania stanu

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 2 Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Obserwowalność stanu Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny Systemy ciągłe

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 3 Obserwowalność systemu ciągłego liniowego stacjonarnego System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu Twierdzenie OSC LS1

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 4 Wymiar macierzy sterowalności: nqxn; n – wymiar stanu, q – wymiar wyjścia Dla q=1 macierz obserwowalności jest macierzą kwadratową i dla sprawdzenia obserwowalności wystarczy sprawdzić nieosobliwość macierzy obserwowalności

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 5 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny do wszystkich kolumn macierz C Twierdzenie OSC LS2

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 6 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (q+n)xn ma rząd n dla dowolnego zespolonego skalara s Twierdzenie OSC LS3 Test obserwowalności w oparciu o twierdzenia 2 lub 3 nosi nazwę testu Popova – Belevitcha-Hautusa

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 7 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz C nie ma kolumn zerowych Twierdzenie OSC LS4

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 8 Obserwowalność a przekształcenia podobieństwa Obserwowalność zostaje zachowana podczas transformacji podobieństwa

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 9 Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Obserwowalność stanu Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny Systemy dyskretne

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 10 Obserwowalność systemu dyskretnego liniowego stacjonarnego System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu Twierdzenie OSD LS1

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 11 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy nie istnieje żadem prawostronny wektor własny macierz A D, taki że co oznacza, że żaden wektor własny macierz A D nie jest ortogonalny do wszystkich kolumn macierz C D Twierdzenie OSD LS2

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 12 System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz o wymiarze (q+n)xn ma rząd n dla dowolnego zespolonego skalara z Twierdzenie OSD LS3 Test sterowalności w oparciu o twierdzenia 2 lub 3 nosi nazwę testu Popova – Belevitcha-Hautusa

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 13 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest obserwowalny wtedy i tylko wtedy, gdy macierz C D nie ma kolumn zerowych Twierdzenie OSD LS4

Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 14 Dziękuję za uczestnictwo w wykładzie i uwagę