Dane INFORMACYJNE Nazwa szkoły:

Slides:



Advertisements
Podobne prezentacje
Prezentacje wykonał : Przemek Lelek kl. IIIa
Advertisements

Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Brzezinach ID grupy: 98/72
Twierdzenie Talesa.
Zespół Szkół im. Ks. Jerzego Popiełuszki
Domy Na Wodzie - metoda na wlasne M
Materiały pochodzą z Platformy Edukacyjnej Portalu
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Dane INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE Gimnazjum Nr 43 w Szczecinie ID grupy: 98/38_MF_G2
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
„Zbiory, relacje, funkcje”
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum nr 5 w Poznaniu ID grupy: 98/30_mf_g2 Opiekun: Olga Jakubczyk Kompetencja: matematyczno-fizyczna Temat projektowy:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół w Lipinkach Łużyckich
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane informacyjene Nazwa szkoły ID grupy Kompetencja Temat projektowy
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE: Nazwa szkoły:
1.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE Nazwa szkoły: PUBLICZNE GIMNAZJUM w CZŁOPIE
„Pomiar i miara” Zespół Szkół Ponadgimnazjalnych w Kotowie 97/24_MF_G1
Spis treści 1. Dane informacyjne 2. Co to jest gęstość? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Archimedes 6. Prawo Archimedesa 7. Zadanie z.
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Temat: Gęstość materii Definicja: Gęstość (masa właściwa)- jest to stosunek masy pewnej porcji substancji do zajmowanej przez nią objętości.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Program Operacyjny kapitał Ludzki
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Spis treści 1. Dane informacyjne 2. Co to jest gęstość substancji? 3. Przyrządy do mierzenia gęstości 4. Układ SI 5. Zadanie z gęstością 6. Zdjęcia z wycieczki.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane Informacyjne Nazwa szkoły:
Dawne jednostki miary AUTOR MICHAŁ WDOWIAK.
Jednostki masy, długości, pola powierzchni i objętości
Jednostki masy, długości, pola powierzchni i objętości
„Wszystko powinno być wykonane tak prosto jak to możliwe, ale nie prościej.” Albert Einstein.
Układy jednostek miar na świecie.
EcoCondens Kompakt BBK 7-22 E.
EcoCondens BBS 2,9-28 E.
Program Operacyjny kapitał Ludzki CZŁOWIEK - NAJLEPSZA INWESTYCJA Projekt,, Z FIZYKĄ, MATEMATYKĄ I PRZEDSIĘBIORCZOŚCIĄ ZDOBYWAMY ŚWIAT!!!” jest.
User experience studio Użyteczna biblioteka Teraźniejszość i przyszłość informacji naukowej.
WYNIKI EGZAMINU MATURALNEGO W ZESPOLE SZKÓŁ TECHNICZNYCH
Niepewność pomiaru Prezentacja przygotowana dla uczniów Gimnazjum nr 4 w Siemianowicach Śląskich autorka Joanna Micał.
Opracował : Jakub Kramek
Testogranie TESTOGRANIE Bogdana Berezy.
Jak Jaś parował skarpetki Andrzej Majkowski 1 informatyka +
Elementy geometryczne i relacje
Strategia pomiaru.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Zapis prezentacji:

Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół im. Karola Marcinkowskiego w Ludomach ID grupy: 98/33_MF_G2 Kompetencja: MATEMATYKA I FIZYKA Temat projektowy: W ŚWIECIE MIARY Semestr/rok szkolny: semestr 2/ rok szkolny 2010/2011

Cele projektu Ogólne: kształcenie umiejętności samodzielnego korzystania z różnych źródeł informacji, gromadzenie, selekcjonowanie i przetwarzanie zdobytych informacji, doskonalenie umiejętności prezentacji zebranych materiałów, rozwijanie własnych zainteresowań, samokształcenie, wyrabianie odpowiedzialności za pracę własną i całej grupy, kształcenie umiejętności radzenia sobie z emocjami , godnego przyjmowania niepowodzeń i ich właściwej interpretacji. W zakresie rozwinięcia umiejętności pracy w grupach: układania harmonogramów działań, planowania i rozliczania wspólnych działań, przekonywania członków grupy do proponowanych rozwiązań w celu wspólnej realizacji planowanych działań, przewidywanie trudności w realizacji projektu i radzenia sobie z nimi.

Cele projektu C.D. Rozwój wiedzy Matematyka : Uporządkowanie i utrwalenie wiadomości o figurach płaskich i bryłach. Wykorzystywanie umiejętności rachunkowych przy rozwiązywaniu problemów z różnych dziedzin. Posługiwanie się kalkulatorem przy wykonywaniu obliczeń oraz przy sprawdzaniu wyników szacowania. Posługiwanie się podstawowymi jednostkami długości, masy, pola i objętości przy rozwiązywaniu różnych zagadnień praktycznych. Fizyka: Poznawanie jednostek miar; zasady poprawnego przeliczania jednostek. Wykonując samodzielnie pomiar uczeń w naturalny sposób dochodzi do pojęcia dokładności pomiaru, błędu pomiaru, nabiera wprawy w obliczaniu i szacowaniu miary.

Cele projektu C.D. Rozwój umiejętności Rozwijanie umiejętności rachunkowych. Używanie kalkulatora przy wykonywaniu obliczeń oraz przy sprawdzaniu wyników szacowania. Posługiwanie się podstawowymi jednostkami długości, masy, pola i objętości przy rozwiązywaniu różnych zagadnień praktycznych. Rozwój postaw Rozwijanie ciekawości poznawczej i umiejętności badawczych. Rozwijanie sprawności umysłowej oraz osobistych zainteresowań uczniów. Rozwijanie samodzielności uczniów oraz umiejętności organizacji pracy własnej. Kształtowanie i rozwijanie umiejętności współpracy w zespole i podejmowania decyzji grupowych. Kształtowanie umiejętności planowania działań. Kształtowanie postawy systematyczności i odpowiedzialności za przydzielone zadania

POJĘCIE MIARY Miara – rozważana w matematyce funkcja służąca określeniu „wielkości” zbiorów poprzez przypisanie im pewnej nieujemnej liczby. Pojęcie to wyrosło z potrzeby bardziej usystematyzowanego spojrzenia na zagadnienia długości, pola powierzchni czy objętości w pracach Lebesgue'a nad jego miarą. Nie wszystkie zastosowania miar muszą mieć związek z wielkościami fizycznymi. Nieformalnie, dla danego zbioru, „miara” jest dowolnym spójnym przypisaniem „wielkości” (pewnym) podzbiorom tego zbioru. (Źródło: WIKIPEDIA)

UKŁAd SI Dzisiaj większość uczonych i inżynierów z całego świata posługuje się najczęściej jednolitym systemem jednostek zwanym Układem SI . Układ ten wywodzi się z Francji, jeszcze z czasów Wielkiej Rewolucji Francuskiej. Jednostki wykorzystywane przez nas w pomiarach na podstawie układu SI, to min. jednostki masy, długości, pola, i objętości

JEDNOSTKI MASY 1 kg = 100 dag         1 dag = 0,01 kg 1 kg = 1000 g          1 g = 0,001 kg 1 dag = 10 g            1 g = 0,1 dag 1 tona = 1000 kg      1 kg = 0,001 tony

JEDNOSTKI DŁUGOŚCI 1 dm = 10 cm      10 cm = 0,1 dm 1 m = 100 cm       1 cm = 0,01 m 1 m = 1000000 cm   1 cm = 0,000001 m 1 km = 1000 m     1 m = 0,001 km

JEDNOSTKI Powierzchni

JEDNOSTKI OBJĘTOŚCI

Wzory na pola i obwody figur

Wzory na objętość brył

Miary starodawne -system miar Rzeczypospolitej wprowadzony 6 grudnia 1764.

Starodawne jednostki rachuby tuzin -12 sztuk mendel-15 m sztyga- 20 izba-40 kopa-60 wielka setka (10 tuzinów)-120 gros (tuzin tuzinów)-144 wielki tysiąc (10 tuzinów)-1440 wielki gros (tuzin grosów)-1728

Starodawne handlowe miary długości Sążeń = 3 łokcie = 6 stóp = 9 sztychów = 12 ćwierci = 24 dłonie = 72 palce = 576 ziaren = 1787 mm Łokieć = 2 stopy = 3 sztychy = 4 ćwierci = 8 dłoni = 24 palce = 192 ziarna = 595,54 mm Stopa = 1,5 sztycha = 2 ćwierci = 4 dłonie = 12 palców = 96 ziaren = 297,77 mm Sztych = 1 1/3 ćwierci = 2 2/3 dłoni = 8 palców = 64 ziarna = 198,51 mm Ćwierć = 2 dłonie = 6 palców = 48 ziaren = 148,87 mm Dłoń = 3 palce = 24 ziarna = 74,44 mm Palec (cal) = 8 ziaren = 24,82 mm Ziarno = 3,10 mm

Starodawne rolne miary długości Zagon (staje) = 3 sznury = 15 lasek = 30 prętów = 60 kroków = 225 łokci = 133,996 m Sznur = 10 prętów = 100 pręcików = 1000 ławek = 44,665 m Laska (wierzbica) = 2 pręty = 4 kroki = 15 łokci =8,933 m Pręt = 10 pręcików = 100 ławek = 4,466 m Krok geometryczny = 5 pręcików = 2,233 m Łokieć = 595,54 mm Pręcik (stopa geometryczna) = 10 ławek = 446,65 mm Ławka (cal geometryczny) = 44,665 mm

Starodawne górnicze miary długości Łatr (lachter polski) = 10 stóp łatrowych = 100 cali łatrowych = 1000 prym = 10 000 sekund łatrowych = 2,016 m Stopa łatrowa = 201,6 mm Cal łatrowy = 20,16 mm Pryma łatrowa = 2,016 mm Sekunda łatrowa = 0,2016 mm

Miary pojemności płynów   Beczka = 2 półbeczki = 14,4 konwi = 72 garnce = 144 półgarncy = 288 kwarty = 1152 kwaterki = 271,36 litra Półbeczka = 36 garncy = 144 kwarty = 576 kwaterek = 136,68 litra Antał = ćwierć beczki, w zależności od regionu od 35 do 90 litrów Achtel = ósma część beczki Baryła - ok. 70 litrów Konew = 5 garncy = 20 kwart = 80 kwaterek = 18,845 litra Garniec = 4 kwarty = 16 kwaterek = 3,7689 litra Półgarniec = 2 kwarty = 8 kwaterek = 1,88445 litra Kwarta = 4 kwaterki = 0,9422 litra Kwaterka = 0,2356 litra

Przykładowe zadania /doświadczenia z miarą jakie wykonywaliśmy

PROBLEM 1: Czy ŁATWO można zmierzyć wysokość kościoła? Pewnego dnia wybraliśmy się na wycieczkę. Zaszliśmy niedaleko- w okolice naszego kościoła. Mieliśmy za zadanie zmierzyć długości cieni: wieży kościoła i Moniki oraz długość kościoła i wzrost Moniki, aby później, w klasie, przy pomocy twierdzenia Talesa obliczyć wysokość budowli. Pomiary wykonywaliśmy miarą i krokomierzem. Agata zaprezentowała nam jak wykorzystać to twierdzenie. Okazało się, że obliczenia nie były trudne.

Twierdzenie talesa Jeżeli ramiona kąta przetniemy prostymi równoległymi, to odcinki wyznaczone przez te proste na jednym ramieniu kąta są proporcjonalne do odpowiednich odcinków na drugim ramieniu kąta.

Proporcje wynikające z twierdzenia talesa

PRZYKŁAD 1. Oblicz długość odcinka oznaczonego literą x. Rozwiązujemy proporcję wynikającą z twierdzenia Talesa: 2,4 ∙ 3,5 = 1 ∙ x x = 8,4

rozwiązanie Wieża kościoła rzuca cień długości 32,70 m. Monika ma 1,66 m wzrostu i rzuca cień długości 3,27 m. Jak wysoki jest kościół? Rozwiązanie najlepiej zacząć od wykonania rysunku pomocniczego

c.d. Zgodnie z twierdzeniem Talesa zachodzi równość: w-wzrost Moniki x-wysokość wieży c-długość cienia Moniki d-długość cienia wieży Po podstawieniu danych otrzymujemy: Nasza wieża ma około 16,6 m wysokości.

PROBLEM 1: Oto pokój ady. Ile ludzi się w nim zmieści ?

rozwiązanie 2,5m 2,5m*2,5m*7,5m=18,75m³ 2,5m Najpierw obliczmy objętość pokoju: 2,5m 2,5m*2,5m*7,5m=18,75m³ 7,5m Teraz obliczmy objętość przeciętnego nastolatka 2. 0,5m*1,60m*0,2m= 0,16m³5m 2,5m 0,5m 1.60m 0,2 m

Ile ludzi wejdzie do pokoju? 18,75m³: 0,16m³=117,19 Odpowiedź: Do pokoju wejdzie tylko 117 osób

problem 3. Jak sprawdzić deklarowany rozmiar monitora LCD? 1cal to 2,5 cm Mierzymy przekątną ekranu. Korzystając z powyższej zależności wykonujemy obliczenia: Zmierzyliśmy przzekątną-38,5 cm, więc 38,5: 2,5= 15,4 cala- tyle ma monitor.

Problem 4. jak obliczyć rozmiar buta?

Sposoby na sprawdzenie rozmiaru obuwia Istnieje kilka sposobów sprawdzenie właściwego rozmiaru obuwia: odrysować stopę na kartce następnie zmierzyć największą odległość (od dużego palca do środka końca pięty), dodać ok 0,5-1cm. Na tej podstawie wyszukać w naszej tabeli rozmiarów obuwia najbliższą temu wymiarowi długość wkładki. zmierzyć długość wkładki w jednym ze pasujących butów (o podobnym fasonie). Wynik odnaleźć w tabeli rozmiarów. zmierzyć długość stopy za pomocą linijki pamiętając, że wkładka buta powinna być większa o około 0,5 cm od stopy w skarpetce. Wynik odszukać w tabeli rozmiarów

Rozmiary butów dla kobiet dla mężczyzn UK EUR US Długość stopy (cm) 3 35,5 5 22,3 3,5 36 5,5 22,8 4,5 37,5 6,5 23,9 5 38 7 24,3 5,5 39 7,5 24,7 6 39,5 8 25,2 6,5 40 8,5 25,6 7 40,5 9 26,0 7,5 41 9,5 26,4 8 42 10 26,8 UK EUR US Długość stopy (cm) 6 39,5 7 25,2 6,5 40 7,5 25,6 7 40,5 8 26,0 7,5 41 8,5 26,4 8 42 9 26,8 8,5 42,5 9,5 27,2 9 43 10 27,7 9,5 44 10,5 28,1 10 44,5 11 28,5 10,5 45 11,5 28,9 11 45,5 12 29,3 11,5 46 12,5 29,7 12 47 13 30,2 12,5 47,5 13,5 30,6 13 48 14 31,0

Wnioski: O czym należy pamiętać przy wybieraniu rozmiaru obuwia? rozmiary obuwia sportowego różnią się od obuwia wizytowego. Rozmiary sportowe są około jeden rozmiar większy od obuwia tradycyjnego. Wybierając obuwie wizytowe na podstawie sportowego należy tę różnicę uwzględnić. Wielkość stóp zmienia się w miarę upływu czasu i narastającego zmęczenia, dlatego długość stopy należy mierzyć przy jej średnim zmęczeniu. rozmiar obuwia należy dobrać z odpowiednim naddatkiem - zgodnie z fachowymi opracowaniami wynosi on około 5% długości stopy.

Problem 5. Jak obliczyć objętość jajka? 1.Nalej do szklanki 180ml wody. 2.Wiadomo 180 ml =180cm3. 3.Wkładamy delikatnie jajko i obserwujemy o ile podniesie się woda w pojemniku. 4. Od wyniku końcowego (190 ml) odejmujemy wartość początkową wody (180 ml) i wyjdzie objętość jajka: 10 ml, czyli 10 cm3

Problem 6. Jak mierzy się suwmiarką? Suwmiarka jest to przyrząd pomiarowy służący do mierzenia grubości, średnic oraz głębokości przedmiotów. W celu dokonania pomiaru odsuwamy suwak suwmiarki w prawo, tak aby mierzony element przedmiotu mieścił się między rozsuniętymi szczękami. Zsuwamy następnie szczęki na przedmiocie, tak aby krawędzie ograniczające zadany wymiar były prostopadłe do prowadnicy. Następnie dosuwamy szczękę przesuwną aż do zetknięcia się płaszczyzny dotykowej szczęk z krawędzią przedmiotu. Nie należy zbyt mocno dociskać ponieważ może to spowodować błąd w pomiarze. Odczytujemy liczbę całych milimetrów wskazaną przez zerową kreskę noniusza, oraz liczbę dziesiątych części milimetra wskazaną przez kreskę noniusza znajdującą się na przedłużeniu pewnej kreski podziałki prowadnicy.

Zdjęcia z przeprowadzanych badań

PODSUMOWANIE I WNIOSKI Temat nam się bardzo podobał. Mieliśmy okazję zapoznać się z różnymi systemami miar, ale również sami skonstruowaliśmy miarę (sznurek do zmierzenia szerokości stawu, krokomierz). Okazało się, że w prosty sposób można mierzyć wysokości budynków,. Potrzebna jest tylko dobra pogoda, a zwłaszcza słońce. Obliczanie ilości farby potrzebnej do pomalowania pokoju też nam nie jest straszne. Okazuje się często, że wykorzystujemy matematykę w życiu codziennym wcale nie zdając sobie z tego sprawy. Obawiamy się obliczeń, zapamiętywania skomplikowanych wzorów, a tymczasem, przy małym wysiłku może to być proste.

AUTORZY Larek Sylwia Adamska Dagmara Juszczak Kamil Aniołek Adriana Osak Angelika Polcyn Joanna Rychlewska Angelika Stokłosa Monika Stokłosa Weronika Wolder Agata Adamska Dagmara Aniołek Adriana Bakiera Jakub Baran Dominik Botorowicz Paulina Graś Mirosław Kardasz-Szypa Patryk Kozubal Lidia Opiekun: Magdalena Nogalska

literatura www.wikipedia.pl www.interklasa.pl Fizyka i astronomia w gimnazjum, wyd. Nowa Era Fizyka, wyd. WSiP M.Pawlikowska, Fizyka, wyd. Pazdro Fizyka z komputerem, wyd. Helion Podręcznik do matematyki- Matematyka 2001, WSiP