WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI

Slides:



Advertisements
Podobne prezentacje
Sortowanie przez scalanie
Advertisements

Algorytmy sortowania i przeszukiwania
Instrukcje - wprowadzenie
Grażyna Mirkowska PJWSTK 15 listopad 2000
PROGRAMOWANIE STRUKTURALNE
ALGORYTM Co to jest algorytm?
algorytm znajdowania największego wspólnego dzielnika (NWD)
ALGORYTMY I STRUKTURY DANYCH
Sortowanie Zajęcia 13.
ZŁOŻONOŚĆ OBLICZENIOWA
ALGORYTMY GEOMETRYCZNE.
Turbo pascal – instrukcje warunkowe, iteracyjne,…
Materiały do zajęć z przedmiotu: Narzędzia i języki programowania Programowanie w języku PASCAL Część 7: Procedury i funkcje © Jan Kaczmarek.
ALGORYTMY.
Algorytmy.
Algorytmy i struktury danych
Matura z informatyki Arkusz I.
Algorytmika w drugim arkuszu maturalnym. Standardy wymagań I. WIADOMOŚCI I ROZUMIENIE I. WIADOMOŚCI I ROZUMIENIE II.KORZYSTANIE Z INFORMACJI II.KORZYSTANIE.
JAKO CZĘŚĆ NASZEGO ŻYCIA
Algorytmy i algorytmika Opracowanie: Teresa Szczygieł
Wstęp do interpretacji algorytmów
Jak uczę programowania?
Dr Anna Kwiatkowska Instytut Informatyki
Algorytmy Marek Pudełko
Algorytmy i algorytmika Opracowanie: Maciej Karanowski
ALGORYTMY Opracowała: ELŻBIETA SARKOWICZ
Budowa algorytmów Algorytm: skończony ciąg operacji wraz z ściśle sprecyzowanym porządkowaniem ich wykonywania, które po realizacji dają rozwiązanie dowolnego.
ALGORYTMY.
POJĘCIE ALGORYTMU Pojęcie algorytmu Etapy rozwiązywania zadań
Algorytmy.
Algorytmy i struktury danych
Algorytmy i Struktury Danych Sortowanie
Algorytmy z przykładami w Turbo Pascal 7.0
PORZĄDEK WŚRÓD INFORMACJI KLUCZEM DO SZYBKIEGO WYSZUKIWANIA
20 września 2003r. Centrum Kształcenia Ustawicznego im. St. Staszica w Koszalinie Wstęp do algorytmiki Autor: Marek Magiera.
ALGORYTMY POSZUKIWANIA I PORZĄDKOWANIA ELEMENTY JĘZYKA PROGRAMOWANIA
Algorytmy i struktury danych
PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERA WPROWADZENIE DO ALGORYTMIKI
BUDOWANIE SCHEMATU BLOKOWEGO REALIZUJĄCEGO PROSTY ALGORYTM
ALGORYTMY.
Jak tworzyć algorytmy.? Sposób krok po kroku..
ZNAJDOWANIE NAJKRÓTSZYCH DRÓG oraz NAJNIŻSZYCH i NAJKRÓTSZYCH DRZEW WSTĘP DO OBLICZEŃ NA GRAFACH
Instrukcje iteracyjne
Algorytmy.
Elżbieta Fiedziukiewicz
Na wysokościach myślenia jest sfera,
ZAPIS BLOKOWY ALGORYTMÓW
Algorytmika.
Wprowadzenie do programowania
Algorytmika Iteracje autor: Tadeusz Lachawiec.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Obliczalność czyli co da się policzyć i jak Model obliczeń maszyna licznikowa dr Kamila Barylska.
ALGORYTMY I STRUKTURY DANYCH WYKŁAD 03 cd. Wyszukiwanie Grażyna Mirkowska PJWSTK, 2003/2004.
Algorytm to przepis prowadzący do osiągnięcia celu lub rozwiązania problemu, opisujący każdy krok. Algorytmika to dziedzina zajmująca się algorytmami (własnościami,
Algorytmy.
Algorytmy – wprowadzenie
METODY REPREZENTOWANIA IFORMACJI
Wstęp do interpretacji algorytmów
Pętle – instrukcje powtórzeń
INFORMATYKA SORTOWANIE DANYCH
Algorytmy. Co to jest algorytm? Przepis prowadzący do rozwiązania zadania.
Algorytmy, sposoby ich zapisu.1 Algorytm to uporządkowany opis postępowania przy rozwiązywaniu problemu z uwzględnieniem opisu danych oraz opisu kolejnych.
Programowanie strukturalne i obiektowe Klasa I. Podstawowe pojęcia dotyczące programowania 1. Problem 2. Algorytm 3. Komputer 4. Program komputerowy 5.
Algorytmy i algorytmika Opracowanie: Teresa Szczygieł
Algorytm to przepis prowadzący do osiągnięcia celu lub rozwiązania problemu, opisujący każdy krok. Algorytmika to dziedzina zajmująca się algorytmami (własnościami,
Efektywność algorytmów
Zrozumieć, przeanalizować i rozwiązać
ZNAJDOWANIE NAJKRÓTSZYCH DRÓG oraz NAJNIŻSZYCH i NAJKRÓTSZYCH DRZEW WSTĘP DO OBLICZEŃ NA GRAFACH
PROSTE RACHUNKI WYKONYWANE ZA POMOCĄ KOMPUTERA WPROWADZENIE DO ALGORYTMIKI
POJĘCIE ALGORYTMU Wstęp do informatyki Pojęcie algorytmu
Zapis prezentacji:

WYSZUKIWANIE I PORZĄDKOWANIE INFORMACJI WPROWADZENIE DO ALGORYTMIKI Maciej M. Sysło Uniwersytet Wrocławski Uniwersytet UMK w Toruniu syslo@ii.uni.wroc.pl informatyka +

Algorytm, algorytmika algorytm od Muhammad informatyka + Algorytm – opis rozwiązania krok po kroku postawionego problemu lub sposobu osiągnięcia jakiegoś celu Pierwszy algorytm – algorytm Euklidesa 300 p.n.e algorytm od Muhammad ibn Musa al-Chorezmi IX w. Algorytmika – dziedzina zajmująca się algorytmami i ich własnościami informatyka +

Algorytmy a informatyka Informatyka – jedna z definicji: dziedzina wiedzy i działalności zajmująca się algorytmami Czy zajmuje się też algorytmami kulinarnymi? Donald E. Knuth: Mówi się często, że człowiek dotąd nie zrozumie czegoś, zanim nie nauczy tego – kogoś innego. W rzeczywistości, człowiek nie zrozumie czegoś (algorytmu) naprawdę, zanim nie zdoła nauczyć tego – komputera. Ralf Gomory (IBM): Najlepszym sposobem przyspieszania komputerów jest obarczanie ich mniejszą liczbą działań (szybszymi algorytmami) informatyka +

Algorytmiczne rozwiązywanie problemu Dla problemu – chcemy otrzymać rozwiązanie komputerowe, które jest: zrozumiałe dla każdego, kto zna problemu poprawne, czyli spełnia specyfikację (opis) problemu efektywne, czyli nie marnuje czasu i pamięci Metoda rozwiązywania: analiza sytuacji problemowej sporządzenie specyfikacji: wykaz danych, wyników i relacji projekt rozwiązania komputerowa realizacja rozwiązania – implementacja testowanie poprawności rozwiązania dokumentacja i prezentacja rozwiązania informatyka +

Rozwiązywanie problemów z pomocą komputerów Objaśnienie dwóch terminów: Problem: problem, gdy nie podano nam, jak należy go rozwiązać, ale wiemy wystarczająco, by poradzić sobie z nim a więc, problem jest dla każdego nie tylko dla orłów Programowanie: komputery wykonują tylko programy cokolwiek uruchamiamy na komputerze: Google, dokument w Word, arkusz w Excel, naciśnięcie klawisza – jest programem każdy widoczny i niewidoczny efekt działania komputera to wynik działania jakiegoś programu Konkluzja: powinniśmy lepiej poznać programowanie komputerów informatyka +

Myślenie algorytmiczne Myślenie komputacyjne (ang Myślenie algorytmiczne Myślenie komputacyjne (ang. computational thinking) Reklama firmy IBM z 1924 roku Komputer to maszyna do myślenia !!! informatyka +

Problemy, algorytmy i ich komputerowe realizacje (implementacje) Plan: Pierwszy algorytm – przeszukiwanie zbioru schematy blokowe algorytm optymalny Kompletowanie podium zwycięzców turnieju Jednoczesne znajdowanie najmniejszego i największego elementu zasada dziel i zwyciężaj Porządkowanie przez wybór – iteracja algorytmu Poszukiwanie informacji: w zbiorze nieuporządkowanym w zbiorze uporządkowanym informatyka +

Znajdowanie elementu w zbiorze Znajdź element w zbiorze: najwyższego ucznia w swojej klasie – metoda spaghetti jak zmieni się Twój algorytm, jeśli chciałbyś znaleźć w klasie najniższego ucznia znajdź w swojej klasie ucznia, któremu droga do szkoły zabiera najwięcej czasu znajdź najstarszego (lub najmłodszego) ucznia w swojej szkole znajdź największą kartę w potasowanej talii kart znajdź najlepszego tenisistę w swojej klasie – nie ma remisów znajdź najlepszego gracza w warcaby w swojej klasie – możliwe są remisy Podstawowa operacja – porównanie: dwóch liczb lub kombinacji liczb (data, karty): czy x < y ? dwóch zawodników: rozegranie meczu informatyka +

Specyfikacja problemu Specyfikacja problemu – dokładne opisanie problemu Problem Min – Znajdowanie najmniejszego elementu w zbiorze Dane: Liczba naturalna n i zbiór n liczb dany w ciągu x1, x2, ..., xn Wynik: Najmniejsza wśród liczb x1, x2, ..., xn – oznaczmy ją min Metoda rozwiązania: przeszukiwanie liniowe – od lewej do prawej Algorytm Min – Znajdowanie najmniejszego elementu w zbiorze Krok 1. Przyjmij za min pierwszy element w zbiorze (w ciągu), czyli przypisz min := x1. Krok 2. Dla kolejnych elementów xi, gdzie i = 2, 3, ..., n, jeśli min > xi, to przypisz min := xi. Algorytm Max – prosta modyfikacja: zamiana > na < Wyznaczanie imin – indeksu elementu o wartości min imin := 1 imin := i informatyka +

Algorytm Min – demo informatyka + Demonstracja przeszukiwania od lewej do prawej: informatyka +

(Zgrubny) schemat blokowy algorytmu Min Instrukcje warunkowe: rozgałęzienia algorytmu Krok 1: min ← pierwszy element ze zbioru A Krok 2: Czy porównano wszystkie elementy ze zbioru A ? Instrukcja iteracyjna Tak Nie Ada Augusta, córka Byrona, uznawana powszechnie za pierwszą programistkę komputerów, przełomowe znaczenie maszyny analitycznej Ch. Babbage’a, pierwowzoru dzisiejszych komputerów, upatrywała właśnie „w możliwości wielokrotnego wykonywania przez nią danego ciągu instrukcji, z liczbą powtórzeń z góry zadaną lub zależną od wyników obliczeń”, a więc w iteracji. Koniec algorytmu x ← kolejny element ze zbioru A Nie min > x ? Tak min ← x informatyka +

Pełny schemat blokowy algorytmu Min informatyka +

Skomputeryzowany schemat blokowy Schemat blokowy wykonany w programie ELI Iteracja Wprowadzanie danych Ciąg (tablica) z danymi Bloki warunkowe informatyka +

Algorytm Min w postaci programu Program w języku Pascal program Min; var i,imin,min,n,x:integer; begin read(n); read(x); min:=x; imin:=1; for i:=2 to n do begin read(x); if min > x then begin min:=x; imin:=i end end; write(imin,min) end. nazwa programu deklaracje, typy zmiennych blok programu – początek czytaj n czytaj pierwszy element iteracja od 2 do n czytaj kolejny element instrukcja warunkowa popraw min instrukcja war. – koniec iteracja – koniec pisz wynik blok programu – koniec informatyka +

Warsztaty Algorytm, język programowania, komputer Proces komputerowej realizacji algorytmu: Opis algorytmu Zapis w języku programowania (Pascal, C++) Przetłumaczenie na język zrozumiały przez komputer Wykonanie Testowanie informatyka +

Pracochłonność algorytmu Min Porównanie – podstawowa operacja w algorytmie Min. Pracochłonność (złożoność obliczeniowa) algorytmu – liczba podstawowych operacji wykonywanych przez algorytm. Pytanie: Ile porównań wykonuje algorytm Min? Odpowiedź: o jedno mniej niż jest elementów, czyli n – 1 Pytania: Czy można szybciej? Czy istnieje szybszy algorytm znajdowania min? A może metoda pucharowa wyłaniania zwycięzcy w turnieju jest szybsza? informatyka +

Ośmiu zawodników: 7 meczy Wyłanianie najlepszego zawodnika w turnieju czyli inny sposób znajdowania max (lub min) Porównania – mecze Tomek Ośmiu zawodników: 7 meczy n zawodników: n – 1 meczy a więc nie jest szybsza Bartek Tomek Bartek Witek Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka +

A może mamy algorytm najlepszy? Podsumowanie: Mamy dwa algorytmy znajdowania min lub max: przeszukiwanie liniowe rozegranie turnieju które na zbiorze n elementów wykonują n – 1 porównań Może nie ma szybszego algorytmu? TAK! Hugo Steinhaus tak to uzasadnił: Jeśli Tomek jest zwycięzcą turnieju, w którym startuje n zawodników, to każdy inny spośród n – 1 zawodników musiał przegrać przynajmniej raz, a zatem rozegrano przynajmniej n – 1 meczy. Zatem każdy algorytm musi wykonać przynajmniej n – 1 porównań, czyli nasze algorytmy są najszybsze – są optymalne. informatyka +

A jak znaleźć drugiego najlepszego zawodnika w turnieju? Tomek Czy jest nim Bartek? Bo przegrał z Tomkiem? Ale Bartek nie grał z drugą połową! Bartek Tomek ??? Tylko dwa dodatkowe mecze! Bartek Witek ??? Tomek Tolek Bartek Romek Bolek Witek Tomek Zenek Tolek Felek informatyka +

Jednoczesne znajdowanie min i max Obserwacja: jeśli x  y, to x kandydatem na min, a y kandydatem na max Algorytm „dziel i zwyciężaj”: Krok 1. Podział na kandydatów na min i kandydatów na max Kandydaci na max 3 ↑ 3 ? 1 ↓ 1 2 ↑ 2 ? 2 ↓ 5 ↑ 5 ? 3 ↓ 3 8 ↑ 4 ? 8 ↓ 4 5 ↑ 2 ? 5 ↓ 2 max = 8 Porównania parami 3 1 2 2 5 3 4 8 2 5 min = 1 Kandydaci na min Krok 2. Znajdź min i max Liczba porównań: algorytm naiwny: n – 1 (min) + n – 2 (max) = 2n – 3 algorytm dziel i zwyciężaj: n/2(podział)+ (n/2–1)(min) + (n/2–1)(max) ok. 3n/2 – 2 – jest to algorytm optymalny informatyka +

Problem porządkowania (sortowania) Dane: Liczba naturalna n i ciąg n liczb x1, x2, ..., xn Wynik: Uporządkowanie tego ciągu liczb od najmniejszej do największej Algorytm: porządkowanie przez wybór – Selection Sort Idea: najmniejszy wśród nieuporządkowanych daj na początek Krok 1. Dla i = 1, 2, ..., n – 1 wykonaj kroki 2 i 3, a następnie zakończ algorytm Krok 2. Znajdź k takie, że xk jest najmniejszym elementem w ciągu xi, ..., xn Krok 3. Zamień miejscami elementy xi oraz xk informatyka +

Porządkowanie przez wybór – demo (1) Żółte – podciąg już uporządkowany Zielone i czerwone – podciąg porządkowany informatyka +

Porządkowanie przez wybór – demo (2) Podciąg już uporządkowany Podciąg porządkowany informatyka +

Złożoność porządkowania przez wybór Liczba zamian elementów w kolejnych krokach: 1 + 1 + 1 + … + 1 = n – 1 Liczba porównań w kolejnych krokach: (n – 1) + (n – 2) + (n – 3) + … + 3 + 2 + 1 = ? Przykład n = 6 Pole prostokąta: 5 x 6 Suma = pole czarnych diamentów: 5 x 6 2 Ogólnie suma: (n – 1) x n Liczby trójkątne 5   4 3 2 1 5 = n – 1 6 = n informatyka +

Poszukiwanie elementu w zbiorze Problem poszukiwania elementu w zbiorze Dane: Zbiór elementów w postaci ciągu n liczb x1, x2, ..., xn. Wyróżniony element y Wynik: Jeśli y należy do tego zbioru, to podaj jego miejsce (indeks) w ciągu, a w przeciwnym razie – sygnalizuj brak takiego elementu w zbiorze Dwa przypadki: Nieuporządkowany ciąg liczb x1, x2, ..., xn Uporządkowany ciąg liczb x1, x2, ..., xn Nasz cel: Jakie są korzyści z uporządkowania? Jak utrzymywać porządek wśród informacji? – wstaw y do ciągu informatyka +

Poszukiwania w zbiorze nieuporządkowanym Algorytm – Poszukiwanie liniowe Krok 1. Dla i = 1, 2, ..., n, jeśli xi = y, to przejdź do kroku 3. Krok 2. Komunikat: W ciągu danych nie ma elementu równego y. Zakończ algorytm: – wynik: –1 Krok 3. Element równy y znajduje się na miejscu i w ciągu danych. Zakończ algorytm: wynik: i begin i:=1; while (x[i]<>y) and (i<n) do i:=i+1; if x[i]=y then PrzeszukiwanieLiniowe:=i else PrzeszukiwanieLiniowe:=-1 end Pewna niedogodność – sprawdzanie, czy koniec ciągu. informatyka +

Poszukiwania w zbiorze nieuporządkowanym z wartownikiem Algorytm – Poszukiwanie liniowe z wartownikiem Takie same kroki algorytmu inna implementacja, czyli komputerowa realizacja: na końcu ciągu: x1 x2 x3 x4 … xn begin i:=1; x[n+1]:=y; while x[i]<>y do i:=i+1; if i<=n then PrzeszukiwanieLinioweWartownik:=i else PrzeszukiwanieLinioweWartownik:=-1 end wstawiamy wartownika – pilnuje końca ciągu xn+1 Nie ma sprawdzania, czy koniec ciągu informatyka +

Poszukiwanie w zbiorze uporządkowanym Zabawa w zgadywanie liczby Zgadywana liczba: 17 w przedziale [1 : 20] Metoda: połowienia przedziału Kolejne kroki: strzałka wskazuje wybór; kolor czerwony – ciąg do przeszukania: 5 porównań zamiast 20 !!! informatyka +

Poszukiwanie przez połowienie w ciągu uporządkowanym function PrzeszukiwanieBinarne(x:tablicax; k,l:integer; y:integer):integer; {Przeszukiwanie binarne ciagu x[k..l] w poszukiwaniu elementu y.} var Lewy,Prawy,Srodek:integer; begin Lewy:=k; Prawy:=l; while Lewy<=Prawy do begin Srodek:=(Lewy+Prawy) div 2; if x[Srodek]=y then begin PrzeszukiwanieBinarne:=Srodek; exit end; {element y nalezy do przeszukiwanego ciagu} if x[Srodek]<y then Lewy:=Srodek+1 else Prawy:=Srodek-1 end; PrzeszukiwanieBinarne:=-1 end Początkowe końce przedziału Połowienie przedziału y należy do przedziału Zmiana końców przedziału y nie należy do przeszukiwanego przedziału informatyka +

Umieszczanie przez połowienie w ciągu uporządkowanym Dane: Uporządkowany ciąg liczb w tablicy x[k..l] oraz element y Wynik: Miejsce dla y w ciągu x[k..l] takie, aby po wstawieniu y ciąg nadal był uporządkowany Algorytm: y wstawiamy do przeszukiwanego ciągu w to miejsce, gdzie algorytm poszukiwania kończy działanie, a więc tam, gdzie jest y (jeśli y jest już w ciągu), albo gdzie powinien być. informatyka +

Porównaj, jaka jest potęga uporządkowania !!! Poszukiwanie przez połowienie złożoność Liczba kroków w algorytmie połowienia: Ile razy należy przepołowić ciąg o danej długości, aby znaleźć element lub miejsce dla niego? Przykład dla n = 1200 Kolejne długości ciągu: 1200, 600, 300, 150, 75, 38, 19, 10, 5, 3, 2, 1 11 razy dzielono ciąg o długości 1200, by pozostał 1 element Liczba porównań w algorytmach poszukiwania dla n = 1200: przez połowienie 11 liniowy 1200 Porównaj, jaka jest potęga uporządkowania !!! informatyka +

Poszukiwanie przez połowienie złożoność – dla orłów Dla n = 1200 liczba porównań w algorytmie połowienia wyniosła 11 Pytania: Jak liczba porównań zależy od n? Jak dobry jest to algorytm? Liczba porównań dla różnych n: Algorytm poszukiwania przez połowienie jest optymalny, czyli najszybciej przeszukuje zbiory uporządkowane. n liczba porównań 100 7 1000 10 10000 14 100000 17 1000000 20 10000000 24 logarytm to anagram od algorytm Funkcja logarytm, bardzo ważna w algorytmice ok.log2 n informatyka +

Pokrewne zajęcia w Projekcie Informatyka + Wykład+Warsztaty (Wszechnica Poranna): Wprowadzenie do algorytmiki i programowania – wyszukiwanie i porządkowanie informacji Proste rachunki wykonywane za pomocą komputera. Techniki algorytmiczne – przybliżone (heurystyczne) i dokładne. Wykłady (Wszechnica Popołudniowa): Czy wszystko można policzyć na komputerze? Porządek wśród informacji kluczem do szybkiego wyszukiwania. Dlaczego możemy się czuć bezpieczni w sieci, czyli o szyfrowaniu informacji. Znajdowanie najkrótszych dróg, najniższych drzew, najlepszych małżeństw informatyka +

Pokrewne zajęcia w Projekcie Informatyka + Kursy (24 godz.) – Wszechnica na Kołach: Algorytmy poszukiwania i porządkowania. Elementy języka programowania Różnorodne algorytmy obliczeń i ich komputerowe realizacje Grafy, algorytmy grafowe i ich komputerowe realizacje  Kursy (24 godz.) – Kuźnia Informatycznych Talentów – KIT dla Orłów: Przegląd podstawowych algorytmów Struktury danych i ich wykorzystanie Zaawansowane algorytmy Tendencje – Wykłady  Algorytmy w Internecie, K. Diks Czy P = NP, czyli jak wygrać milion dolarów w Sudoku, J. Grytczuk Między przeszłością a przyszłość informatyki, M.M Sysło informatyka +