Filozoficzne zagadnienia mechaniki kwantowej 1

Slides:



Advertisements
Podobne prezentacje
ATOM.
Advertisements

Studia niestacjonarne II
T: Dwoista natura cząstek materii
dr inż. Monika Lewandowska
dr inż. Monika Lewandowska
WYKŁAD 3 KORPUSKULARNY CHARAKTER PROMIENIOWANIA ELEKTROMAGNETYCZNEGO (efekt fotoelektryczny i efekt Comptona, światło jako fala prawdopodobieństwa) D.
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Wstęp do fizyki kwantowej
ŚWIATŁO.
OPTYKA FALOWA.
Budowa atomu.
Wykład XII fizyka współczesna
Wykład XI.
Wykład IX fizyka współczesna
Wykład III Fale materii Zasada nieoznaczoności Heisenberga
FIZYKA dla studentów POLIGRAFII Kwantowa natura promieniowania
FIZYKA dla studentów POLIGRAFII Falowe własności materii
Podstawy fotoniki optoelectronics. Światło promień, fala czy cząstka? cząstka - Isaac Newton ( ) cząstka - Isaac Newton ( ) fala - Christian.
T: Promieniowanie ciała doskonale czarnego
T: Model atomu Bohra Podstawowy przykład modelu atomu – atom wodoru.
Temat: Dwoista korpuskularno-falowa natura cząstek materii –cd.
Fotony.
Rozwój poglądów na budowę materii
OPTYKA FALOWA.
Zjawisko fotoelektryczne
WYKŁAD 1.
Prowadzący: Krzysztof Kucab
mechanika kwantowa Podstawy
Kwantowy opis efektu fotoelektrycznego
EFEKT FOTOELEKTRYCZNY
Wykład II Model Bohra atomu
Świadomość a paradoksy mechaniki kwantowej
Zjawiska Optyczne.
Instytut Inżynierii Materiałowej
Niels Bohr Postulaty Bohra mają już jedynie wartość historyczną, ale właśnie jego teoria zapoczątkowała kwantową teorię opisu struktury atomu. Niels.
Dział II Fizyka atomowa.
Elementy chemii kwantowej
Dziwności mechaniki kwantowej
Zadania na sprawdzian z fizyki jądrowej.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: Zjawisko fotoelektryczne
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Kwantowa natura promieniowania
Paradoksy mechaniki kwantowej a filozofia
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
od kotków Schroedingera do komputerów kwantowych
Fale de broglie’a Zjawisko comptona dyfrakcja elektronów
Instytut Filozofii UMCS
Efekt fotoelektryczny
EFEKT FOTOELEKTRYCZNY
Chemia jest nauką o substancjach, ich strukturze, właściwościach i reakcjach w których zachodzi przemiana jednych substancji w drugie. Badania przemian.
Efekt fotoelektryczny
Teoria Bohra atomu wodoru
Budowa atomu Poglądy na budowę atomu. Model Bohra. Postulaty Bohra
DYFRAKCJA ELEKTRONÓW FALE DE BROGLIE’A ZJAWISKO COMPTONA Monika Boruta Zarządzanie i Inżynieria Produkcji Grupa 1 Referat nr 2.
Mechanika kwantowa dla kognitywistów Wykład 3 Wprowadzenie matematyczne: liczby zespolone, przestrzeń Hilberta, aksjomaty QM Andrzej Łukasik Instytut Filozofii.
Elementy fizyki kwantowej i budowy materii
„Stara teoria kwantów”
Uniwersytet Marii Curie-Skłodowskiej
Elementy fizyki kwantowej i budowy materii
Podstawy Fizyki - Optyka
Elementy fizyki kwantowej i budowy materii
Wkład fizyków do mechaniki kwantowej
DUALIZM KORPUSKULARNO FALOWY
Elementy mechaniki kwantowej
Opracowała: mgr Magdalena Sadowska
Zapis prezentacji:

Filozoficzne zagadnienia mechaniki kwantowej 1 Andrzej Łukasik Zakład Ontologii i Teorii Poznania Instytut Filozofii UMCS http://bacon.umcs.lublin.pl/~lukasik www.filozofia.umcs.lublin.pl

Fizyka klasyczna a fizyka kwantowa Klasyczny obraz świata: „Natura non facit saltus” „Dwa główne aspekty odróżniają, w sposób najbardziej uderzający, mechanikę kwantową od teorii klasycznych. Są to: charakter kwantowy i dualizm korpuskularno-falowy” (S. Szpikowski, Podstawy mechaniki kwantowej, s. 20).

Kwantowy charakter zjawisk „W rzeczywistości cała fizyka jest fizyką kwantową — prawa fizyki kwantowej są najogólniejszymi znanymi nam prawami przyrody. […] fizyka klasyczna dotyczy tych aspektów przyrody, które nie wiążą się bezpośrednio z zagadnieniem podstawowych składników materii” (Eyvind H. Wichmann, Fizyka kwantowa, s. 17).

Kwantowomechaniczna rewolucja Lata 1900-1925: teoria kwantów – przełomowe koncepcje 1900 – hipoteza Maxa Plancka (kwant działania) 1905 – hipoteza Alberta Einsteina (fotony) 1913 – model Nielsa Bohra (atomu wodoru) 1924 – hipoteza Louisa de Broglie (fale materii) Lata 1925-1927 – powstanie mechaniki kwantowej

Promieniowanie ciała doskonale czarnego Niepowodzenie interpretacji widma ciała doskonale czarnego przy użyciu pojęć i praw fizyki klasycznej

Kwanty energii Max Planck (1858-1947) prawo promieniowania ciała doskonale czarnego 14 grudnia 1900 – narodziny teorii kwantów h – elementarny kwant działania

Energia jest emitowana i absorbowana w sposób dyskretny Energia kwantu jest proporcjonalna do częstości „Hipoteza Plancka wprowadzająca kwanty energii nie jest kontynuacją uprzedniej myśli fizycznej. Oznacza przełom zupełny. Jego głębię i konieczność wykazały wyraźniej następne dziesięciolecia. Idea kwantów była kluczem do zrozumienia niedostępnych nam uprzednio zjawisk atomowych” (Max von Laue, Historia fizyki, s. 201-202).

„Starałem się przeto włączyć w jakiś sposób pojęcie kwantu działania h do teorii klasycznej. Jednakże wielkość ta okazała się krnąbrna i oporna na wszelkie próby zmierzające w tym kierunku. […] Moje bezskuteczne próby włączenia w jakiś sposób pojęcia kwantu działania do teorii klasycznej trwały wiele lat i kosztowały mnie wiele trudu. Niektórzy moi koledzy dopatrywali się w tym swoistego elementu tragizmu. Mam odmienny pogląd na to, dla mnie bowiem korzyść, jaką uzyskałem dzięki gruntownemu wyjaśnieniu sobie sprawy, była tym cenniejsza. Wiedziałem teraz dobrze, że kwant działania odgrywa w fizyce o wiele większą rolę, niż początkowo skłonny byłem przypuścić; dzięki temu zrozumiałem konieczność wprowadzenia do fizyki atomowej całkowicie nowych metod ujmowania problemów i przeprowadzania obliczeń” (M. Planck, Jedność fizycznego obrazu świata, s. 243-244). h = 6,62419 x 10-34 J s elementarny kwant działania

Zjawisko fotoelektryczne zewnętrzne Zjawisko wybijania elektronów z powierzchni metalu pod wpływem padającego światła 1887 Hertz: światło ultrafioletowe, przechodząc między elektrodami cewki indukcyjnej, której używał w swoich eksperymentach, ułatwia wyładowanie iskrowe, tak jakby między elektrodami pojawiały się dodatkowe nośniki elektryczności 1888 Wilhelm Hallwachs: przyczyną wzrostu natężenia wyładowania iskrowego w doświadczeniu Hertza jest występowanie naładowanych cząstek, które później zostały zidentyfikowane jako elektrony; ciała naładowane elektrycznie tracą ładunek pod wpływem oświetlania.

Empiryczne prawa rządzące zjawiskiem fotoelektrycznym (1902 Lenard) 1) liczba emitowanych z powierzchni fotokatody elektronów jest proporcjonalna do natężenia padającego promieniowania elektromagnetycznego 2) maksymalna energia kinetyczna elektronów jest wprost proporcjonalna do częstości promieniowania, nie zależy natomiast od jego natężenia 3) istnieje graniczna częstość, poniżej której efekt nie zachodzi, tzn. promieniowanie o częstości niższej niż charakterystyczna dla danego metalu częstość graniczna nie powoduje emisji elektronów Rezultatów tych nie można wyjaśnić na podstawie elektrodynamiki klasycznej

Albert Einstein (1879-1955) teoria zjawiska fotoelektrycznego (1905) światło jest strumieniem cząstek (fotonów), których energia jest proporcjonalna do częstości fali świetlnej: E = h, pęd fotonów p związany jest z długością fali świetlnej λ wzorem: p = h/λ = h/c c = 3 x 108 m/s – prędkość światła w próżni W zjawisku fotoelektrycznym pojedynczy foton absorbowany jest przez elektron: h = A + mv2/2 A – praca wyjścia elektronu z metalu

Niels Bohr (1855-1962) model atomu wodoru (1913) planetarny model atomu Rutherforda + niezgodne z fizyką klasyczną postulaty kwantowe

Postulaty kwantowe Bohra 1. mvr = nh/2 h – stała Plancka orbity są skwantowane - ich promienie mogą przybierać jedynie ściśle określone, dyskretne wartości 2. Elektron na dozwolonej, czyli stacjonarnej orbicie nie promieniuje energii 3. h = En – Em

„Każde z tych założeń — warunek kwantyzacji, brak promieniowania podczas pobytu na jednej ze skwantowanych orbit i promieniowanie w trakcie przeskoku między orbitami, było sprzeczne ze znaną wówczas klasyczną teorią. Jednakże rzeczą konieczną było założenie w jakiś sposób stabilności atomu. Promieniowanie w trakcie przeskoku wydawało się być zgodne z tym, co zostało już stwierdzone przez Einsteina i Plancka. Warunek kwantowania także nie różnił się zbytnio od pierwotnego warunku Plancka” (L. N. Cooper, Istota i struktura fizyki, s. 528).

Siła dośrodkowa = siła Coulomba mv2/r = e2/(40r2) z pierwszego postulatu Bohra mvr = nh/(2), prędkość elektronu na danej orbicie: v = nh/(2rm)

Promień n-tej orbity Bohrowskiej, n = 1, 2,… główna liczba kwantowa; (r0 = 0,5292  10–10 m) Energia na n-tej orbicie: Częstość linii widmowych

Louis Victor de Broglie (1892–1987) hipoteza fal materii (1924) Recherches sur la théorie des Quanta J. J. Thomson o pracy de Broglie: „Idee autora były oczywiście niedorzeczne, ale zostały przedstawione z taką elegancją i błyskotliwością, że dopuściłem pracę do obrony” Dualizm korpuskularno-falowy

1927 doświadczenia Clintona Davissona (1881–1958) i Lestera Germera (1896–1971) potwierdziły hipotezę de Broglie’a: elektrony, podobnie jak fale elektromagnetyczne, ulegają dyfrakcji i interferencji, a więc zjawiskom typowym dla fal

Powiązanie fal materii de Broglie z orbitami stacjonarnymi Bohra Jeżeli elektrony zinterpretujemy jako fale stojące, to w atomie długość „orbity stacjonarnej” musi być całkowitą wielokrotnością długości fali  elektronu, (w przeciwnym wypadku fale w wyniku interferencji destruktywnej uległyby wygaszeniu). n = 2R, R – promień dozwolonej orbity w modelu Bohra  = h/p nh/p = 2R pR = nh/2 p = mv mvR = nh/2 (warunek kwantowy Bohra)

Dualizm korpuskularno-falowy Hipoteza falowa światła (elektrodynamika klasyczna – Maxwell, 1864) Dyfrakcja Interferencja Polaryzacja Hipoteza korpuskularna światła (Einstein, 1905) Zjawisko fotoelektryczne Promieniowanie ciała doskonale czarnego Widma liniowe Hipoteza fal materii (de Broglie, 1924)

Eksperyment z dwiema szczelinami „[…] nikt nie rozumie mechaniki kwantowej”. (Richard P. Feynman, Charakter praw fizycznych, s. 137) „Ten jeden eksperyment zawiera w sobie wszystkie tajemnice mechaniki kwantowej. Jego analiza pozwoli nam na zapoznanie się ze wszystkimi osobliwościami i paradoksami natury. Każdy inny problem z dziedziny teorii kwantów można zawsze wyjaśnić, wracając do tego doświadczenia”. (Richard P. Feynman, Charakter praw fizycznych, s. 138).

Przejście klasycznych cząstek przez układ dwóch szczelin (brak interferencji) N1 – liczba cząstek przechodzących przez szczelinę 1 N2 – liczba cząstek przechodzących przez szczelinę 2 N12 – prawdopodobieństwo = średnia liczba cząstek trafiających w dane miejsce ekranu, gdy otwarte są szczeliny 1 i 2 N12 = N1 + N2 (brak interferencji) Źródło grafiki: http://www.blacklightpower.com/theory/DoubleSlit.shtml

Przejście klasycznych fal przez układ dwóch szczelin (interferencja) H1 – amplituda fali przechodzącej przez szczelinę 1 H2 – amplituda fali przechodzącej przez szczelinę 2 H12 – amplituda fali (obydwie szczeliny otwarte) H12 = H1 + H2 Natężenie fali: I12 = (H12)2 = (H1 + H2)2 (interferencja), I1 = (H1)2 I2 = (H2)2

Przejście elektronów (lub fotonów) przez układ dwóch szczelin Interferencja elektronów (fotonów)

Przejście elektronów (lub fotonów) przez układ dwóch szczelin Rezultaty eksperymentu: Elektrony trafiają w detektor pojedynczo Detektor rejestruje zawsze taką samą, dyskretną wartość (cały elektron lub nic) Nigdy dwa detektory nie rejestrują jednego elektronu Ale! N12 ≠ N1 + N2 N12 = (a1 + a2)2 – prawdopodobieństwo trafienia elektronu (fotonu) w dany punkt ekranu (interferencja! – jak w przypadku fal) a – amplituda prawdopodobieństwa

„Podsumowując, można powiedzieć, że elektrony docierają do detektorów w całości, tak jak pociski, ale prawdopodobieństwo rejestracji elektronów jest określone takim wzorem jak natężenie fali. W tym sensie elektron zachowuje się jednocześnie jak cząstka i jak fala”. (R. P. Feynman, Charakter…, s. 147)

Określenie, przez którą szczelinę przechodzi elektron brak interferencji

Elektrony rejestrowane są jako niepodzielne cząstki Twierdzenie „elektron przechodzi albo przez szczelinę 1 albo przez szczelinę 2” jest FAŁSZYWE! „jest rzeczą niemożliwą tak ustawić światła, aby stwierdzić, przez którą szczelinę przeleciał elektron, nie zaburzając go na tyle, że znika obraz interferencyjny” (Feynman, Charakter, s. 151)