Standardowa entalpia z entalpii tworzenia

Slides:



Advertisements
Podobne prezentacje
Laser.
Advertisements

Entropia Zależność.
OBLICZENIA Ułamek molowy xi=ni/Σni Ułamek masowy wi
Rozprężanie swobodne gazu doskonałego
I zasada termodynamiki; masa kontrolna i entalpia
Wykład Temperatura termodynamiczna 6.4 Nierówność Clausiusa
Wykład Mikroskopowa interpretacja entropii
Stała równowagi reakcji Izoterma van’t Hoffa
TERMODYNAMIKA CHEMICZNA
TERMODYNAMIKA CHEMICZNA
Metody wyznaczania stałej równowagi reakcji
RÓWNANIE CLAUSIUSA-CLAPEYRONA
procesy odwracalne i nieodwracalne
TERMODYNAMIKA CHEMICZNA
ENTALPIA - H [ J ], [ J mol -1 ] TERMODYNAMICZNA FUNKCJA STANU dH = H 2 – H 1, H = H 2 – H 1 Mgr Beata Mycek - Zakład Farmakokinetyki i Farmacji Fizycznej.
TERMODYNAMIKA CHEMICZNA
Wykład Fizyka statystyczna. Dyfuzja.
Porządkowanie listy. Nieporozumienia związane z pojęciem entropii Jan Mostowski Instytut Fizyki PAN.
Podstawy termodynamiki
Zależność entropii od temperatury
Kinetyczna Teoria Gazów Termodynamika
Podstawy termodynamiki Gaz doskonały
Cząsteczki homodwujądrowe
Swobodna ekspansja gazu – przykład procesu nieodwracalnego
I ZASADA TERMODYNAMIKI
TERMODYNAMIKA.
TERMOCHEMIA.
TERMOCHEMIA.
Wykład VIII Termodynamika
Wykład 14 Termodynamika cd..
Termodynamika cd. Wykład 2. Praca w procesie izotermicznego rozprężania gazu doskonałego V Izotermiczne rozprężanie gazu Stan 1 Stan 2 P Idealna izoterma.
Wykład Równanie Clausiusa-Clapeyrona 7.6 Inne równania stanu
FIZYKA dla studentów POLIGRAFII Statystyka ruchów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Dynamika procesów cieplnych
FIZYKA dla studentów POLIGRAFII Układy i procesy termodynamiczne
Podstawy fotoniki wykład 6.
Wykład 9 Wielki zespół kanoniczny i pozostałe zespoły
Przedmiot: Fizyka doświadczalna: Termodynamika
Podstawy Biotermodynamiki
Podsumowanie i wnioski
PULSACJE GWIAZDOWE Jadwiga Daszyńska-Daszkiewicz, semestr zimowy 2009/
S P Ilość Czas.
Chemia fizyczna Termodynamika 2013/14.
TERMODYNAMIKA – PODSUMOWANIE WIADOMOŚCI Magdalena Staszel
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Grzegorz Górski Fizyka statystyczna Grzegorz Górski
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Są cztery Prawa termodynamiki
Pierwsza zasada termodynamiki
Druga zasada termodynamiki
Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:
Mechanika i dynamika molekularna
TERMODYNAMIKA.
Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Entropia gazu doskonałego
1 Zespołu statystyczny Zespołu statystyczny - oznacza zbiór bardzo dużej liczby kopii rozważanego układu fizycznego, odpowiadających temu samemu makrostanowi.
Średnia energia Średnia wartość dowolnej wielkości A wyraża się W przypadku rozkładu kanonicznego, szczególnie zwartą postać ma wzór na średnią wartość.
Potencjały termodynamiczne PotencjałParametryWarunek S (II zasada)U,V(dS) U,V ≥ 0 U (I zasada)S,V(dU) S,V ≤ 0 H = U + pVS, p(dH) S,p ≤ 0 F = U - TST, V(dF)
Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:
Wiadomości organizacyjne Tadeusz Hofman, Zakład Chemii Fizycznej, p. 148, Gmach Chemii Materiały internetowe:
Termodynamika statystyczna Wykład – 30 godz. Ćwiczenia rachunkowe – 30 godzin.
DYFUZJA.
Fizyka statystyczna a termodynamika fenomenologiczna Fizyka statystyczna (teoria kinetyczno-cząsteczkowa) i termodynamika - dział fizyki zajmujący się.
Termodynamiczna skala temperatur Stosunek temperatur dowolnych zbiorników ciepła można wyznaczyć mierząc przenoszenie ciepła podczas jednego cyklu Carnota.
TERMODYNAMIKA.
9. Termodynamika 9.1. Temperatura
Chemia fizyczna /17.
Wzory termodynamika www-fizyka-kursy.pl
Zapis prezentacji:

Standardowa entalpia z entalpii tworzenia pierwiastki w stanach termodynamicznie trwałych w ilościach wynikających ze stechiometrii

Standardowa entalpia z entalpii tworzenia

Jeszcze parę słów o temperaturze Czego temperaturę mierzymy? Mierzymy temperaturę termometru! Musi istnieć wspólny parametr. Wtedy temperatura termometru jest równa temperaturze układu. Zapewnia nam to istnienie osłony diatermicznej, co gwarantuje Zerowa Zasada Termodynamiki.

Jak zmierzyć temperaturę? Jeśli nie bezpośrednio, to jak? Równanie stanu F(T, p, V, n = const) = 0. Stąd Ścisłą zależność daje nam pochodna: Ale pochodnej tej nie znamy! Co robić? Najprostsze rozwiązanie: Potrzebne dwa punkty do kalibracji!

Jeszcze parę słów o temperaturze Wady „takiej” temperatury: arbitralność definicji, uzależnienie od cieczy, termometrycznej. Anders Celsius (1701-1744)

Jeszcze parę słów o temperaturze Różne gazy, p  0, m = const pV t/ oC t =-273,15

Jeszcze parę słów o temperaturze Różne gazy, p  0, V0 (T0,p0) = const pV William Thomson (1824-1907) t/ oC t =-273,15 skala Kelvina

Jeszcze parę słów o temperaturze Termometr gazowy i temperatura empiryczna

Dlaczego pewne procesy zachodzą, a inne nie? W świecie, w którym żyjemy zachodzą tylko niektóre procesy, które nie są sprzeczne z I Zasadą. I Zasada nie wystarczy! Te procesy, które zachodzą, są nieodwracalne. niektóre!

Cały nasz Świat to właśnie procesy nieodwracalne …

Cały nasz Świat to właśnie procesy nieodwracalne …

Cały nasz Świat to właśnie procesy nieodwracalne …

Cały nasz Świat to właśnie procesy nieodwracalne …

Cały nasz Świat to właśnie procesy nieodwracalne …

Cały nasz Świat to właśnie procesy nieodwracalne …

w warunkach izochorycznych możliwe tylko procesy egzotermiczne ≤ 0 ? Dlaczego ???? A może „zasada minimalizacji energii”? dU ≤ 0 ? dU = -pzdV + dQ ≤ 0 ? dla V = const dQ ≤ 0 ? w warunkach izochorycznych możliwe tylko procesy egzotermiczne ≤ 0 ?

Eksperyment z kartami Jakie jest prawdopodobieństwo powrotu do pierwotnego, uporządkowanego rozkładu poprzez tasowanie ? Liczba wszystkich konfiguracji (kolejności kart) wynosi 52! Ω = 52! Jeśli wszystkie konfiguracje są jednakowo prawdopodobne, to prawdopodobieństwo zaistnienia jednej z nich wynosi

II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 2

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 3

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 4

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 5

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 6

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 7

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 8

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 8

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 7

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 6

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 5

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 4

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 3

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 2

II zasada termodynamiki - swobodna ekspansja gazu – przykład procesu nieodwracalnego Początek - 1

Swobodna ekspansja gazu – przykład procesu nieodwracalnego 1 2 3 4 5 6 7 8

Swobodna ekspansja gazu Każdej cząsteczce możemy przydzielić jeden z dwóch stanów – L i P. Cząsteczka w każdym z nich może się znaleźć z jednakowym prawdopodobieństwem. Liczba wszystkich możliwych stanów wynosi: 2∙2∙2∙2∙… = 2N. Przy założeniu, że wszystkie lokalizacje każdej cząsteczki są jednakowo prawdopodobne, prawdopodobieństwo powrotu do stanu początkowego wynosi Jeśli przyjąć, że zmiana konfiguracji odbywa się w czasie Plancka, tj.  = 10-43 s, przejście po wszystkich konfiguracjach wymagałoby czasu rzędu 2N lat! To znacznie dłużej niż istnieje (i będzie istniał) Wszechświat!

Entropia w ujęciu statystycznym Jednemu stanowi makroskopowemu odpowiada olbrzymia liczba mikrostanów kwantowych Jeśli wszystkie stany są jednakowo osiągalne, to spontaniczny proces w układzie izolowanym biegnie od stanu 1 do stanu 2, jeśli Ω1 << 2 Wprowadzając funkcję zwaną entropią S = k lnΩ formułujemy zasadę wzrostu entropii: Dla każdego spontanicznego procesu zachodzącego w układzie izolowanym, tj. U, V, N = const, entropia musi rosnąć, osiągając maksimum w stanie równowagi

Stanowi makroskopowemu odpowiada wielka liczba mikrostanów kwantowych. Podsumowanie Znaczenie funkcji S = k ln Stanowi makroskopowemu odpowiada wielka liczba mikrostanów kwantowych. Proces nieodwracalny przebiega od stanu mniej prawdopodobnego (realizowanego przez mniejszą liczbę mikrostanów kwantowych) do stanu bardziej prawdopodobnego (realizowanego przez większą liczbę mikrostanów kwantowych). Stanowi równowagi odpowiada maksymalna liczba mikrostanów kwantowych. Równoważne sformułowanie posługuje się pojęciem entropii. Odpowiednia reguła, zwana zasadą wzrostu entropii brzmi: Dla (N,V,U=const, tj. dla układu izolowanego) możliwy jest tylko proces, któremu towarzyszy wzrost entropii, która osiąga maksimum w stanie równowagi.

Właściwości entropii S = kln Ω Ponieważ dla układu złożonego, Ω = Ω1 ∙2 - entropia jest funkcją ekstensywną S = S1 + S2

Przyjmijmy, że parametrem niezależnym jest U1, wtedy Znaczenie pochodnej izolacja od otoczenia N = const V = const U1 + U2 = const N1,V1 N2 ,V2 U1 U2 Jaki będzie warunek równowagi względem przepływu energii pomiędzy 1 a 2 ? Zgodnie z zasadą wzrostu entropii, stan równowagi odpowiada maksimum entropii S = S1 + S2 dU1 + dU2 = 0 dU1 = - dU2 Przyjmijmy, że parametrem niezależnym jest U1, wtedy

Definicja temperatury termodynamicznej Znaczenie pochodnej izolacja od otoczenia N = const V = const U1 + U2 = const N1,V1 N2 ,V2 U1 U2 W stanie równowagi Definicja temperatury termodynamicznej

Związek pomiędzy termodynamiką statystyczną a klasyczną stała Boltzmanna Jeśli przyjmiemy, że k = R/NA

dU = dw + dQ dU = dwodw + dQodw TdS = dQodw ≥ dQ Ciepło a entropia praca odwracalna - dwodw jest minimalna ciepło odwracalne – dQodw jest maksymalne dQodw ≥ dQ TdS =

II zasada termodynamiki Postuluje się istnienie funkcji stanu zwanej entropią (S), która ma następujące właściwości Jest funkcją ekstensywną

Lokalny charakter II Zasady II Zasada nie ma charakteru uniwersalnego, stosuje się jedynie do układów: - makroskopowych, - w stanie równowagi, - ergodycznych. Z braku uniwersalności wynikają liczne nieporozumienia i błędne interpretacje (do dnia dzisiejszego !)

Rudolf Julius Emmanuel Clausius (1822-1888) Ludwig Eduard Boltzmann (1844-1906)

Wnioski z I i II zasady (1) dU = dw + dQ = dwodw + dQodw dU = -pdV + TdS Wnioski: Istnienie związków pomiędzy parametrami (funkcjami) stanu. Uzasadnienie zasady Duhema (dwa parametry opisują różniczkę zupełną). Interpretacja temperatury i możliwe dalsze rozwinięcie dU.

Wnioski z I i II zasady(2) parametr intensywny – siła uogólniona deformacja parametru ekstensywnego dU = -pdV + TdS To jest bilans energii: praca +ciepło ! ….bo mogą być inne formy przekazywania energii ! „zwykła” siła

Wnioski z I i II Zasady (3) dla procesu odwracalnego dla każdego procesu U,V,(N) = const …. entropia rośnie i osiąga maksimum w stanie równowagi (zasada wzrostu entropii)

Wnioski z I i II Zasady (4) dla procesu odwracalnego dla każdego procesu S,V,(N) = const …. energia wewnętrzna maleje i osiąga minimum w stanie równowagi

Wnioski z I i II Zasady (5) Nie tylko entropia decyduje o naszym Świecie…. Parametrem rozstrzygającym o kierunku zachodzenia procesów mogą być różne funkcje (zwane potencjałami termodynamicznymi). Entropia jest potencjałem termodynamicznym dla U,V, N = const, podczas gdy dla warunków S,V,N = const, takim potencjałem jest energia wewnętrzna. Z praktycznego punktu widzenia najlepszy byłby potencjał „rządzący” procesami w warunkach dających się łatwo kontrolować (stałe parametry p, V, T)

Wnioski z I i II Zasady (6) – pozostałe potencjały Entalpia: H = U + pV U = H - pV dla procesu odwracalnego dla każdego procesu S,p,(N) = const …. entalpia maleje i osiąga minimum w stanie równowagi

Wnioski z I i II Zasady (7) – pozostałe potencjały Energia swobodna: F = U - TS U = F + TS dla procesu odwracalnego dla każdego procesu T,V,(N) = const …. energia swobodna maleje i osiąga minimum w stanie równowagi

Wnioski z I i II Zasady (8) – pozostałe potencjały Entalpia swobodna: G = H – TS = U + pV - TS U = G – pV + TS dla procesu odwracalnego dla każdego procesu T,p,(N) = const …. entalpia swobodna maleje i osiąga minimum w stanie równowagi

Entalpia swobodna – najważniejszy potencjał termodynamiczny Entalpia swobodna (energia Gibbsa, funkcja Gibbsa) G = H – TS różniczka zupełna pochodne cząstkowe relacja Maxwella

Potencjały termodynamiczne – pochodne i różniczki różniczka zupełna pochodne cząstkowe relacje Maxwella Entropia dS = (1/T)dU + (p/T)dV (S/U)V = 1/T (S/V)U = p/T   Energia wewnętrzna dU = TdS - pdV (U/S)V = T (U/V)S = -p (T/V)S = - (p/S)V Entalpia dH = TdS +Vdp (H/S)p= T (H/p)S = V (T/p)S = (V/S)p Energia swobodna dF = -SdT - pdV (F/T)V = -S (F/V)T= -p (S/V)T = (p/T)V Entalpia swobodna dG = -SdT +Vdp (G/T)p= -S (G/p)T = V (S/p)T = - (V/T)p

Potencjały termodynamiczne Parametry Warunek S (II zasada) U,V (dS)U,V ≥ 0 U (I zasada) S,V (dU)S,V ≤ 0 H = U + pV S, p (dH)S,p ≤ 0 F = U - TS T, V (dF)T,V ≤ 0 G = H - TS T, p (dG)T,p ≤ 0

Wnioski z I i II Zasady Termodynamiki 1. Istnieją funkcje (potencjały termodynamiczne), których zmiana, przy stałości dwóch parametrów, decyduje o kierunku procesu; potencjał termodynamiczny osiąga minimum (maksimum) w stanie równowagi. 2. Daje to możliwość znajdywania związków między parametrami w stanie równowagi. 3. Można wyprowadzić liczne tożsamości, wyrażające związki pomiędzy funkcjami termodynamicznymi, umożliwiające obliczanie ich zmian podczas rzeczywistych procesów.

Bilanse reaktorów chemicznych reaktor okresowy reaktor przepływowy zwykle V = const zwykle V = const „minus” praca techniczna

Praca techniczna p p+dp różniczkowa praca techniczna

Zależność entropii od temperatury

Jak wyznaczyć entropię? cp lnT lnT0 lnT1

III Zasada Termodynamiki Jeśli przyjmiemy, że S(T=0) = 0 - postulat ten nosi nazwę III Zasady Termodynamiki, W termodynamice statystycznej wymóg ten jest zbyteczny, bo dla S(Ω =1) = kln (1) = 0 i ten stan odpowiada T = 0

Termodynamika układów otwartych przecież U zmienia się w wyniku transportu masy!!!! Bilans energii: dU = – pdV + TdS + …… ?

Potencjał chemiczny Potencjał chemiczny ma charakter siły uogólnionej, jest miarą wpływu zmiany liczby moli na energię wewnętrzną, jest parametrem intensywnym

Różniczka zupełna energii wewnętrznej