Uczenie konkurencyjne.

Slides:



Advertisements
Podobne prezentacje
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Advertisements

Włodzisław Duch Katedra Informatyki Stosowanej,
Inteligencja Obliczeniowa Metody oparte na podobieństwie do wzorców.
Algorytm Dijkstry (przykład)
Inteligencja Obliczeniowa Sieci dynamiczne cd.
Inteligencja Obliczeniowa Indukcja reguł - modele.
Inteligencja Obliczeniowa Sieci RBF.
Inteligencja Obliczeniowa Otwieranie czarnej skrzynki.
Katedra Informatyki Stosowanej UMK
Inteligencja Obliczeniowa Drzewa Decyzji.
Katedra Informatyki Stosowanej UMK
Inteligencja Obliczeniowa Wizualizacja.
Samoorganizacja: uczenie bez nadzoru.
Inteligencja Obliczeniowa Sieci dynamiczne.
Inteligencja Obliczeniowa Metody probabilistyczne.
Inteligencja Obliczeniowa Systemy neurorozmyte.
Wykład 28 Włodzisław Duch Uniwersytet Mikołaja Kopernika
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Sieci o zmiennej strukturze.
Inteligencja Obliczeniowa Perceptrony
Inteligencja Obliczeniowa Feature Space Mapping.
o radialnych funkcjach bazowych
Sztuczne sieci neuronowe
Ulepszenia metody Eigenfaces
Rozpoznawanie Twarzy i Systemy Biometryczne, 2005/2006
Wykład 14 Termodynamika cd..
Termodynamika cd. Wykład 2. Praca w procesie izotermicznego rozprężania gazu doskonałego V Izotermiczne rozprężanie gazu Stan 1 Stan 2 P Idealna izoterma.
Inteligencja Obliczeniowa Klasteryzacja i uczenie bez nadzoru.
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Krzysztof Suchecki wybrana prezentacja z konferencji ECCS'07 w Dreźnie Interacting Random Boolean Networks.
Sieci neuronowe jednokierunkowe wielowarstwowe
Klasyfikacja dokumentów za pomocą sieci radialnych
Klasyfikacja dokumentów za pomocą sieci radialnych Paweł Rokoszny Emil Hornung Michał Ziober Tomasz Bilski.
Sztuczne Sieci Neuronowe
formalnie: Uczenie nienadzorowane
Wspomaganie decyzji nie zwalnia od decyzji...
Detekcja twarzy w obrazach cyfrowych
Universalne Modele Uczenia - Cwiczenia
Systemy wspomagania decyzji
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
VI EKSPLORACJA DANYCH Zadania eksploracji danych: klasyfikacja
VII EKSPLORACJA DANYCH
Seminarium licencjackie Beata Kapuścińska
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Metody sztucznej inteligencji – technologie rozmyte i neuronoweReguła propagacji wstecznej  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów.
Metody Inteligencji Obliczeniowej
Średnia energia Średnia wartość dowolnej wielkości A wyraża się W przypadku rozkładu kanonicznego, szczególnie zwartą postać ma wzór na średnią wartość.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
Metody Inteligencji Obliczeniowej Adrian Horzyk Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii.
Uczenie konkurencyjne. Wykład 6 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch.
Uczenie konkurencyjne
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Learnmatrix, Adaline, Madaline i modele liniowe
Systemy neuronowo – rozmyte
Samoorganizacja: uczenie bez nadzoru
Kognitywne właściwości sieci neuronowych
Perceptrony o dużym marginesie błędu
Co do tej pory robiliśmy:
Włodzisław Duch Katedra Informatyki Stosowanej,
Sieci o zmiennej strukturze
Perceptrony o dużym marginesie błędu
Systemy Ekspertowe i Sztuczna Inteligencja trudne pytania
Uczenie konkurencyjne
Inteligencja Obliczeniowa Perceptrony
Katedra Informatyki Stosowanej UMK
Samoorganizacja: uczenie bez nadzoru
Inteligencja Obliczeniowa Sieci RBF.
Perceptrony wielowarstwowe, wsteczna propagacja błędów
Zapis prezentacji:

Uczenie konkurencyjne. Wykład 6 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch (c) 1999. Tralvex Yeap. All Rights Reserved

Mapy w mózgu Samoorganizacja Sieci SOM Kohonena Co było (c) 1999. Tralvex Yeap. All Rights Reserved

Mapy ekwiprobabilistyczne Zwycięzca bierze wszystko Gaz neuronowy Co będzie Mapy ekwiprobabilistyczne Zwycięzca bierze wszystko Gaz neuronowy Demonstracje w Javie (c) 1999. Tralvex Yeap. All Rights Reserved

Mapy ekwiprobabilistyczne Dla 1 wymiaru można pokazać, że uporządkowanie jest prawidłowe, ale p(Wi)  p(X)2/3 w granicy ciągłego rozkładu. Stosowanie lokalnych funkcji błędu prowadzi do p(Wi)  p(X)1/3 SOM przecenia rejony mało prawdopodobnych danych i niedocenia rejony o dużym prawdopodobieństwie. Powstają neurony bezużyteczne; jak wykorzystać całą sieć? Conscience Learning (DeSieno 1988; Hecht-Nielsen 1988). fi - częstość wygrywania neuronu i, C - stała. Zasada jednakowego zniekształcenia: każdy neuron powinien mieć podobny wkład do końcowego błędu kwantyzacji (klasyfikacji). (c) 1999. Tralvex Yeap. All Rights Reserved

Maksymalizacja entropii Kwantyzator maksymalizujący entropię (MEQ): w każdym przedziale takie samo prawdopodobieństwo. Można to osiągnąć maksymalizując entropię: Jak znaleźć optymalne przedziały by osiągnąć ekwiprobabilistyczny podział? (c) 1999. Tralvex Yeap. All Rights Reserved

BAR Reguła Adaptacji Granic, Boundry Adaptation Rule. Jeśli P(Hi) jest za duże (zbyt często pojawiają się wektory z tego przedziału) to wielkość przedziału należy zmniejszyć. Przedział w 1D określony jest przez wagi. Jeśli dane są z przedziału Hi to Wi przesuwamy w lewo (zmniejszamy przedział Hi), jeśli z Hi+1 to w prawo (zmniejszamy przedział Hi+1). Zmiany ustają gdy mamy ekwiprobabilistyczny podział: (c) 1999. Tralvex Yeap. All Rights Reserved

Konstruktywny SOM Growing Cell Structures (Fritzke 1993). Początkowa topologia: k-wymiarowy sympleks (k=1, 2, 3). Dodaje się nowe neurony i usuwa stare. Algorytm SOM, ale bez zmniejszania sąsiedztwa i adaptacji dokonuje się tylko dla zwycięzcy i bezpośrednich sąsiadów. Znajdź neuron-zwycięzcę c. Popraw jego wagi: DWc=hs(X-Ws). Popraw wagi sąsiadów DWs=hs(X-Ws). Zwiększ licznik częstości Dtc=1, zmniejsz wszystkie Dtc=-a tc. Policz zrenormalizowane częstości fi = ti/Sjtj Po ustalonej liczbie epok L znajdź neuron o największej częstości i wstaw pomiędzy ten neuron i najdalszego sąsiada nowy neuron tworząc lokalny sympleks; nowy wektor weź z interpolacji. (c) 1999. Tralvex Yeap. All Rights Reserved

Rozwój GCS (c) 1999. Tralvex Yeap. All Rights Reserved

GCS - 2 obszary Sytuacja w 3-wym. przestrzeni danych - 2 oddzielone skupienia. Sieć GCS rosnąca w dwóch wymiarach - odpowiednia topologia. (c) 1999. Tralvex Yeap. All Rights Reserved

Voronoi i Delaunay Punkty granice decyzji Triangulacja danych Voronoia Delaunaya Obszary Voronoia - neuron zwycięża konkurencję. Zbiór Voronoia - zbiór wektorów wewnątrz obszaru Voronoia. Łącząc neurony, których obszary Voronoia mają wspólną krawędź otrzymujemy traingulację Delaunaya. (c) 1999. Tralvex Yeap. All Rights Reserved

WTA Algorytm LBG typu WTA: Uczenie konkurencyjne - WTA, Winner Takes All. Nazywane też Hard Competitive Learning. Jeden zwycięzca, dane pojedynczo (on-line) lub wszystkie (batch). Mogą powstawać bezużyteczne neurony - konieczna incjalizacja zgodna z rozkładem danych. Algorytm LBG typu WTA: przypadkowa inicjalizacja; Powtarzaj aż ustaną zmiany: pokaż wszystkie dane i znajdź zbiory Voronoia; przesuń wagi neuronu do centrum obszaru Wariant LBG-U: przesuń mało użyteczne (zerowy zbiór Voronoia) neurony w lokalne minima błędu. (c) 1999. Tralvex Yeap. All Rights Reserved

Gas neuronowy Algorytm NG typu SOM: Wariant uczenia konkurencyjnego (Schulten i Martinez 1991) Algorytm NG typu SOM: przypadkowa inicjalizacja N wektorów; t=0; Wybierz przypadkowy wektor V Zrób ranking wag najbliższych V; k=1..N Zastosuj regułę adaptacji: zmniejszając eksponencjalnie obszar l i stałą uczenia e(t). (c) 1999. Tralvex Yeap. All Rights Reserved

Co dalej? Wizualizacja Systemy rozmyte i neurorozmyte. Podstawy teoretyczne CI. Inspiracje statystyczne. Drzewa decyzji. Metody oparte na podobieństwie. Uczenie maszynowe, indukcja reguł logicznych. Zastosowania. (c) 1999. Tralvex Yeap. All Rights Reserved

Koniec wykładu 6 Dobranoc ! (c) 1999. Tralvex Yeap. All Rights Reserved