System lingwistyczny - wnioskowanie

Slides:



Advertisements
Podobne prezentacje
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Mechanizm wnioskowania rozmytego
Sztuczna Inteligencja Reprezentacja wiedzy I Logika przybliżona
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
KNW- Wykład 8 Wnioskowanie rozmyte.
Sztuczna Inteligencja Reprezentacja wiedzy I Logika przybliżona
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Systemy rozmyte Systemami rozmytymi nazywamy systemy (statyczne lub dynamiczne) w których wykorzystujemy zbiory rozmyte i właściwy im aparat matematyczny.
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Model lingwistyczny – wnioskowanie Mamdani’ego
Model Takagi – Sugeno – Kang’a - TSK
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
UKŁADY SZEREGOWO-RÓWNOLEGŁE
O relacjach i algorytmach
Wyrażenia algebraiczne
Metody Lapunowa badania stabilności
Systemy/modele rozmyte – podstawy i struktury
Wykład 25 Regulatory dyskretne
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Wybrane modele rozmyte i schematy wnioskowania
formalnie: Rozmyte systemy wnioskujące
ŻYWE JĘZYKI PROGRAMOWANIA LIVING IT UP WITH A LIVE PROGRAMMING LANGUAGE Sean McDirmid Ecole Polytechnique Fédérale de Lausanne (EPFL)
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Systemy/modele rozmyte – podstawy i struktury
Miary efektywności/miary dobroci/kryteria jakości działania SSN
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Sterowanie – metody alokacji biegunów
Metody sterowania – sterowanie rozmyte
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Wnioskowanie w stylu Takagi - Sugeno.
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
Do technik tych zalicza się: * sztuczne sieci neuronowe
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Sterowanie rozmyte i neuronowe I
Zagadnienia AI wykład 4.
Zagadnienia AI wykład 2.
Zagadnienia AI wykład 6.
Zagadnienia AI wykład 5.
Wnioskowanie Mamdani’ego
Metody sztucznej inteligencji – technologie rozmyte i neuronoweSystemy rozmyte – podstawy i struktury  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Metody Sztucznej Inteligencji – technologie rozmyte i neuronowe Wnioskowanie Mamdani’ego - rozwinięcia  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii.
Modelowanie i identyfikacja 2014/2015Modele rozmyte  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Systemy rozmyte są modelami.
Metody sztucznej inteligencji – technologie rozmyte i neuronoweReguła propagacji wstecznej  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów.
 Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Metody sztucznej inteligencji – Technologie rozmyte i neuronoweSystemy.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modelowanie rozmyte – podstawy,
Etapy procesu sterowania rozmytego
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie Mamdani’ego I © Kazimierz Duzinkiewicz, dr hab.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modelowanie rozmyte – podstawy,
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie Mamdani’ego II © Kazimierz Duzinkiewicz, dr hab.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie formalne © Kazimierz Duzinkiewicz, dr hab. inż.
Podstawowe rodzaje modeli rozmytych
Systemy neuronowo – rozmyte
Metody sztucznej inteligencji
Sterowanie procesami ciągłymi
Sztuczna Inteligencja Reprezentacja wiedzy I Logika przybliżona
Zapis prezentacji:

System lingwistyczny - wnioskowanie Wnioskowanie rozmyte, nazywane też rozumowaniem przybliżonym, jest procedurą wnioskowania, która wyprowadza wnioski w oparciu o zbiór rozmytych reguł IF-THEN i znane fakty Wnioskowanie w systemie opartym o reguły jest procesem opartym na złożeniowej zasadzie wnioskowania (Zadeh-1973) Złożeniowa reguła wnioskowania - analogie z klasyczną analizą Zadania: a) znaleźć wartość b opowiadającą wartości a przy zadanym odwzorowaniu f punktowym b) znaleźć przedział b odpowiadający przedziałowi a przy zadanym odwzorowaniu f przedziałowym

Inaczej: Wnioskowanie rozmyte, jest procesem wyznaczania rozmytego zbioru wyjścia systemu w oparciu o zbiór rozmytych reguł IF-THEN i rozmyte zbiory wejścia Każda reguła może być rozważana jako relacja rozmyta (rozmyte ograniczenie na jednoczesne występowanie określonych wartości x oraz y) z funkcją przynależności obliczaną z formuły (dla uproszczenia zapisu opuścimy dalej indeks i)

Operator I może być:  implikacją rozmytą w sensie klasycznym  implikacją rozmytą inżynierską (t-normą) I implikacja rozmyta w sensie klasycznym: - jeżeli przesłanka zachodzi to konkluzja musi zachodzić jeżeli przesłanka nie zachodzi nie potrafimy nic powiedzieć o zachodzeniu konkluzji relacja nie może być odwrócona (nie jest symetryczna)

Przykłady implikacji rozmytej klasycznej: - implikacja Łukasiewicza - implikacja Kleene-Diene

I implikacja rozmyta w sensie inżynierskim: implikacja zachodzi jeżeli zachodzi przesłanka i konkluzja relacja może być odwrócona (jest symetryczna) Przykłady implikacji rozmytej inżynierskiej: - implikacja Mamdani’ego (t-norma MIN) - implikacja Larsena (t-norma PROD)

- relacja rozmyta określona na przestrzeni rozważań Złożeniowa reguła wnioskowania (Zadeh’a) Niech: - relacja rozmyta określona na przestrzeni rozważań - zbiór rozmyty określona na przestrzeni rozważań oraz: - funkcja przynależności pary do relacji rozmytej - funkcja przynależności do zbioru rozmytego Pamiętając, że: wynik złożenia zbioru A oraz relacji F rzutowany na przestrzeń Y jest określony

Używając t-normy min dla operacji przecięcia: i rzutując to przecięcie na przestrzeń Y otrzymamy funkcję wyniku złożenia w tej przestrzeni Zbiór B możemy zatem wyrazić:

Ilustracja: Zbiór rozmyty A i jego rozszerzenie cylindryczne Relacja rozmyta F Zbiór rozmyty A i jego rozszerzenie cylindryczne Przecięcie F i A Projekcja przecięcia F i A na przestrzeń Y Zadanie: Dana relacja rozmyta F na przestrzeni rozważań XxY oraz zbiór rozmyty A na przestrzeni rozważań X Znaleźć wynik złożenia relacji F i zbioru A określony w przestrzeni rozważań Y

Złożeniowa reguła wnioskowania (Zadeh’a)  Jeżeli A jest zbiorem rozmytym określonym na przestrzeni rozważań X, a R jest dwuargumentową relacją zdefiniowaną na iloczynie kartezjańskim przestrzeni X x Y, to złożenie A i R oznaczone jako A  R daje zbiór rozmyty określony w przestrzeni rozważań Y funkcją przynależności B(x,y) określoną wzorem: gdzie: A  jest rozszerzeniem cylindrycznym A na przestrzeń X x Y

Uogólniona złożeniowa reguła wnioskowania  Jeżeli A jest zbiorem rozmytym określonym na przestrzeni rozważań X, a R jest dwuargumentową relacją zdefiniowaną na iloczynie kartezjańskim przestrzeni X x Y, to złożenie A i R oznaczone jako A  R daje zbiór rozmyty określony w przestrzeni rozważań Y funkcją przynależności B(x,y) określoną wzorem: gdzie: A  jest rozszerzeniem cylindrycznym A na przestrzeń X x Y

Wykorzystując złożeniową regułę wnioskowania można sformułować procedurę wnioskowania rozmytego  Każda reguła IF-THEN może być traktowana jako relacja rozmyta (rozmyte ograniczenie na jednoczesne pojawienie się x oraz y): R:(XxY)  [0,1] obliczana Operator I może być typu (i) „A pociąga za sobą B” - uogólnienie implikacji klasycznej, albo typu (ii) „A powiązane z B” – operacja przecięcia realizowana t-normą

 Niech A, A’ oraz B będą zbiorami rozmytymi (wartościami zmiennej lingwistycznej) w przestrzeniach rozważań X, X oraz Y, odpowiednio. Załóżmy, że implikacja rozmyta A  B jest dana relacją rozmytą R określoną na X x Y. Wówczas zbiór rozmyty B’ indukowany przez fakt „x jest A’ ” oraz regułę „jeżeli x jest A to y jest B” jest określony przez funkcję przynależności: lub równoważnie:

Realizacje:  Podejście formalne oparte o relacje rozmyte – systemy czystej logiki rozmytej  Podejście uproszczone – wnioskowanie Mamdaniego – systemy z rozmywaniem i wyostrzaniem

Podejście formalne 1. Przedstaw każdą regułę IF-THEN jako relację rozmytą 2. Zagreguj posiadane relacje w jedną reprezentatywną dla całej bazy reguł 3. Mając określone wejście, użyj reguły złożeniowej dla określenia odpowiadającego mu wyjścia

Wnioskowanie z jedną regułą 1. Oblicz funkcję przynależności relacji implikacji 2. Użyj regułę złożeniową dla obliczenia B’ z A’ Przykład graficzny:

Praktycznie obliczenia relacyjne mogą być prowadzone w dyskretnych przestrzeniach rozważań Przykład: Rozważmy regułę: ze zbiorami rozmytymi A oraz B danymi Niech zbiór rozmyty wejścia

Używając t-normy min (implikacja Mamadaniego) macierz relacji RM reguły IF-THEN otrzymujemy w postaci

Zbiory wejścia: przesłanki A i faktu A’ Stosując regułę złożeniową wnioskowania obliczymy zbiór wyjścia

Wybierając ponownie zastosowanie t-normy min jako operatora przecięcia obliczymy je dla aktualnego zbioru wejścia i relacji

Zbiory wyjścia: konkluzji B i faktu B’

Używając operatora implikacji Łukasiewicza otrzymamy macierz relacji RŁ reguły IF-THEN w postaci

Wybierając zastosowanie jako operatora przecięcia t-normę Łukasiewicza

Zbiory wyjścia: konkluzji B i faktu B’

Wpływ na wynik wnioskowania i wybór metody wyostrzania! Implikacja inżynierska Implikacja klasyczna - Przyjmuje wartość zero kiedy tylko przesłanka lub konkluzja, bądź obydwie nie są prawdziwe Przyjmuje wartość zero tylko, kiedy przesłanka jest prawdziwa, a konkluzja nie Kiedy przesłanka nie jest prawdziwa, przyjmuje wartość 1 niezależnie od wartości konkluzji Wpływ na wynik wnioskowania i wybór metody wyostrzania!

Wnioskowanie z wieloma regułami 1. Oblicz relację implikacji dla każdej z relacji 2. Zagreguj relacje Ri w jedną całościową 3. Użyj regułę złożeniową dla obliczenia B’ z A’

Agregacja reguł Baza reguł jest przedstawiana za pomocą agregacji relacji Ri odpowiadających poszczególnym regułom w pojedynczą relację  Jeżeli Ri jest typu „A pociąga za sobą B” (implikacja w sensie klasycznym) reguła całościowa jest uzyskiwana za pomocą operatora przecięcia poszczególnych relacji Ri (operatora t-normy)  Jeżeli Ri jest typu „A powiązane z B” (implikacja inżynierska) reguła całościowa jest uzyskiwana za pomocą operatora połączenia poszczególnych relacji Ri (operatora s-normy)

Dyskretyzacja przestrzeni rozważań Przykład – model lingwistyczny spalania gazu przy stałym natężeniu dopływu gazu Dyskretyzacja przestrzeni rozważań Tablice funkcji przynależności: Przesłanek Konkluzji Wartość lingwistyczna Element dziedziny 1 2 3 Low 1.0 0.6 0.0 OK 0.4 High 0.1 Wartość lingwistyczna Element dziedziny 25 50 75 100 Low 1.0 0.6 0.0 High 0.3 0.9

Baza reguł: Dziedziny lingwistyczne reguł: R1: LowxLow; R2: OKxHigh; R3: HighxLow; Macierze implikacji dla poszczególnych reguł: wybieramy t-normę MIN: R1: LowxLow

R2: OKxHigh R3: HighxLow

Agregacja reguł:

Relacje reguł graficznie i ich agregacja – graficzna ilustracja (większa rozdzielczość dyskretyzacji przestrzeni rozważań): R1: LowxLow R = R1R2R3 R2: OKxHigh R3: HighxLow

Grafik/wykres rozmyty Wykres rozmyty modelu lingwistycznego z przykładu. Ciemniejsze zacieniowanie odpowiada większemu stopniowi przynależności. Linia ciągła jest możliwą funkcją punktową reprezentującą podobną relację jak model rozmyty

Wnioskowanie Niech zbiór rozmyty wejścia - Somewhat Low (raczej niskie)

Wybieramy t-normę złożenia - MIN: Approximately Low

Niech teraz zbiór rozmyty wejścia - Approximately OK (mniej więcej OK)

Wybieramy t-normę złożenia - MIN: Approximately High

konieczność wykonywania i przechowywania wyników obliczeń relacyjnych Niedogodność metody formalnej: konieczność wykonywania i przechowywania wyników obliczeń relacyjnych Można pokazać, że dla przypadków 1. korzystania do reprezentacji reguł z implikacji rozmytych i dla punktowych (crisp) wejść 2. korzystania do reprezentacji reguł z t – norm (tzw. implikacje inżynierskie) i dla wejść zarówno punktowych (crisp) jak i rozmytych schemat wnioskowania może być uproszczony przez ominięcie obliczeń relacyjnych

Dla korzystania do reprezentacji reguł z t – norm (tzw Dla korzystania do reprezentacji reguł z t – norm (tzw. implikacje inżynierskie) i dla wejść zarówno punktowych (crisp) jak i rozmytych uproszczenia te prowadzą do powszechnie znanego schematu wnioskowania nazywanego wnioskowaniem Mamdaniego Ebrahim MAMDANI Imperial College of Science, Technology and Medicine, University of London