Dynamika bryły sztywnej

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład 13 Ruch obrotowy Zderzenia w układzie środka masy
Wykład Opis ruchu planet
Ruch harmoniczny, prosty, tłumiony, drgania wymuszone
Ruch i jego parametry Mechanika – prawa ruchu ciał
Kinematyka punktu materialnego
Ruch układów złożonych
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
Dane INFORMACYJNE (do uzupełnienia)
UKŁADY CZĄSTEK.
Wykład 4 dr hab. Ewa Popko
Prędkość kątowa Przyśpieszenie kątowe.
Układ wielu punktów materialnych
Wykład IV 1. Zasada zachowania pędu 2. Zderzenia 3
BRYŁA SZTYWNA.
Wykład VI. Prędkość kątowa Przyśpieszenie kątowe.
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Wykład Moment pędu bryły sztywnej - Moment bezwładności
Wykład Spin i orbitalny moment pędu
Ruch układów złożonych środek masy bryła sztywna ruch obrotowy i toczenie.
Test 2 Poligrafia,
Test 1 Poligrafia,
FIZYKA dla studentów POLIGRAFII Wykład 5
FIZYKA dla studentów POLIGRAFII Wykład 4
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
Ruch drgający Drgania – zjawiska powtarzające się okresowo
MECHANIKA NIEBA WYKŁAD r.
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład bez rysunków Ruch jednostajny po okręgu
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Z Wykład bez rysunków ri mi O X Y
Politechnika Rzeszowska
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
Kinematyka zajmuje się ilościowym badaniem ruchu ciał z pominięciem czynników fizycznych wywołujących ten ruch. W mechanice technicznej rozważa się zagadnienia.
dr inż. Monika Lewandowska
MECHANIKA 2 Wykład Nr 14 Teoria uderzenia.
Dynamika ruchu płaskiego
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Temat: Energia w ruchu harmonicznym
Temat: Matematyczny opis ruchu drgającego
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Ruch układów złożonych
Dynamika ruchu obrotowego
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
FIZYKA KLASA I F i Z Y k A.
KULA KULA JEST TO ZBIÓR PUNKTÓW W PRZESTRZENI, KTÓRYCH ODLEGŁOŚĆ OD JEJ ŚRODKA JEST MNIEJSZA LUB RÓWNA PROMIENIOWI.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
Prowadzący: dr Krzysztof Polko
Bryła sztywna Bryła sztywna lub inaczej ciało sztywne, to układ punktów materialnych, które zawsze mają te same odległości względem siebie. Względne odległości.
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Ruch złożony i ruch względny Prowadzący: dr Krzysztof Polko
Symulacje komputerowe
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Dynamika bryły sztywnej Materiały uzupełniające

Dynamika ciała sztywnego Ruch prostoliniowy Ruch obrotowy Przemieszczenie x Prędkość Przyspieszenie Masa M Siła Praca Energia kinetyczna Przemieszczenie kątowe θ Prędkość kątowa Przyspieszenie kątowe Moment bezwładności I Moment siły Praca Energia kinetyczna

Dynamika ciała sztywnego c.d. Ruch obrotowy Ruch prostoliniowy Moc Pęd Moc Moment pędu

Wielkości wymienione w poprzedniej tabeli: przemieszczenie, prędkość, przyspieszenie, siła, przemieszczenie kątowe, prędkość i przyspieszenie kątowe, moment siły, moment pędu są - wektorami. Masa, moment bezwładności, energia kinetyczna, praca – są skalarami. Dynamika ruchu obrotowego nie wprowadza nowych pojęć, jej parametry θ, ω, α odpowiadają parametrom x, v i a ruchu postępowego.

Odpowiednikiem siły w ruchu obrotowym jest moment 𝛕 siły F, działającej na punkt materialny:

Odpowiednikiem pędu jest moment L pędu : r θ

Jeżeli F i r leżą w płaszczyźnie xy, to obrót nastąpi wokół osi z F Dynamika ciała sztywnego zajmuje się ruchem układu punktów materialnych tworzących ciało sztywne, które może się obracać wokół osi pod wpływem przyłożonej siły. Położenie punktu P względem osi obrotu, w którym przyłożona jest siła, definiuje wektor r. Jeżeli F i r leżą w płaszczyźnie xy, to obrót nastąpi wokół osi z F y r P x

Moment bezwładności I W dynamice ruchu obrotowego (obrót ciała sztywnego) masę ciała zastępujemy układem elementów masy mi rozłożonych w przestrzeni, odległych o ri od wybranej osi obrotu – zastępujemy sumą iloczynów pomnożonych przez kwadrat odległości. Moment bezwładności definiujemy następująco:

Przykład 1 Mierząc energie poziomów rotacyjnych cząsteczki fluorowodoru HF stwierdzono, że jej moment bezwładności I względem środka masy 0 wynosi 1.37•10-47 kg•m2. Określić odległość r między dwoma atomami H i F, jeżeli odpowiednie masy wynoszą: mH = 1.67 • 10-27 kg mF = 3.17 • 10-27 kg mF mH rF rH

Moment bezwładności Położenie środka masy, korzystne jest umieszczenie w punkcie o współrzędnej równej zero. Odległość atomów H i F

Otrzymujemy układ równań z dwiema niewiadomymi Rozwiązując otrzymujemy:

Przykład 2 Obliczyć energię kinetyczną E ruchu obrotowego pokazanego na rysunku łożyska kulkowego, którego wewnętrzny wałek o promieniu r i długości h obraca się z prędkością kątową ω, a n kulek toczy się bez poślizgu. Wszystkie elementy łożyska wykonane są z materiału o gęstości ρ. Promień każdej kulki wynosi a. r a Chwilowa oś obrotu kulki o promieniu a

Energia kinetyczna wewnętrznego wałka o momencie bezwładności I0 Prędkość liniowa kulki i walca są równe w punkcie styku. prędkość kątowa kulki Energię kinetyczną kulki liczymy względem chwilowej osi obrotu, promień obrotu r + 2a

Moment bezwładności względem chwilowej osi obrotu Ik i energia Ek

Całkowita energia kinetyczna łożyska Efektywny moment bezwładności łożyska

Przykład 3 Jednorodny walec o masie m i promieniu r toczy się w polu siły ciężkości wewnątrz walca o promieniu R. znaleźć równanie ruchu walca wychylonego w chwili początkowej z położenia równowagi o kąt φ0. Kiedy to o trzymane równanie można w prosty sposób rozwiązać? O R O’ a φ

Środek małego walca porusza się względem osi obrotu O, po torze będącym wycinkiem kołowym o promieniu R – a z chwilową prędkością kątową ω1 i z prędkością liniową v. Mały walec względem osi O’ porusza się z prędkością kątową ω2 .

Całkowita energia kinetyczna jest sumą energii kinetycznej ruchu obrotowego względem osi O i względem osi O’. I – moment bezwładności względem osi O, I0 – względem osi)’

Całkowita energia kinetyczna wynosi: Energia potencjalna:

Na tej podstawie można napisać

Otrzymujemy równanie ruchu, trudne do rozwiązania jeżeli Otrzymujemy równanie oscylatora harmonicznego