W dalszej części zajęć wyróżniać będziemy następujące

Slides:



Advertisements
Podobne prezentacje
w szkole średniej Wykonały: Alicja Makowska i Beata Karwowska
Advertisements

BIOSTATYSTYKA I METODY DOKUMENTACJI Ćwiczenie 1
Szereg rozdzielczy Szereg rozdzielczy jest zestawieniem, w którym wartości badanej cechy statystycznej rozdzielone są na określone grupy (klasy), a każdej.
Analiza współzależności zjawisk
Biostatystyka inż. Jacek Jamiołkowski Wykład 2 Statystyka opisowa.
Badania marketingowe na rynkach produktów sektora wysokich technologii Wybrane metody analizy danych.
Podsumowanie wykładu 1. Najpełniejszą charakterystyką wybranej zmiennej jest jej rozkład.
Skale pomiarowe – BARDZO WAŻNE
PODSUMOWANIE WIADOMOŚCI ZE STATYSTYKI
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Charakterystyki opisowe rozkładu jednej cechy
Jak mierzyć asymetrię zjawiska?
Jak mierzyć zróżnicowanie zjawiska? Wykład 4. Miary jednej cechy Miary poziomu Miary dyspersji (zmienności, zróżnicowania, rozproszenia) Miary asymetrii.
Miary jednej cechy Miary poziomu Miary dyspersji Miary asymetrii (skośności)
Właściwości średniej arytmetycznej
ANALIZA STRUKTURY SZEREGU NA PODSTAWIE MIAR STATYSTYCZNYCH
Miary położenia Miary położenia opisują umiejscowienie typowych wartości cechy statystycznej na osi liczbowej.
MIARY ZMIENNOŚCI Główne (wywołujące zmienność systematyczną)
Krzysztof Jurek Statystyka Spotkanie 4. Miary zmienności m ó wią na ile wyniki są rozproszone na konkretne jednostki, pokazują na ile wyniki odbiegają
Statystyka w doświadczalnictwie
(dla szeregu szczegółowego) Średnia arytmetyczna (dla szeregu szczegółowego) Średnią arytmetyczną nazywamy sumę wartości zmiennej wszystkich jednostek.
Podstawowe pojęcia prognozowania i symulacji na podstawie modeli ekonometrycznych Przewidywaniem nazywać będziemy wnioskowanie o zdarzeniach nieznanych.
BIOSTATYSTYKA I METODY DOKUMENTACJI
Dane informacyjne: Gimnazjum im. Marii Skłodowskiej-Curie
Wykład 5 Przedziały ufności
Wykład 4. Rozkłady teoretyczne
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
analiza dynamiki zjawisk Szeregi czasowe
Opracowała: Joanna Wasiak
Konstrukcja, estymacja parametrów
Kurs specjalistyczny dla pielęgniarek, mgr Adam Dudek, PWSZ Nysa 2007
dr Dariusz Chojecki, Instytut Historii i Stosunków Międzynarodowych US
Badania osiągnięć uczniów – analiza wyników
„Człowiek - najlepsza inwestycja”
Elementy Rachunku Prawdopodobieństwa i Statystyki
dla klas gimnazjalnych
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół nr 5 w Szczecinku i Zespół Szkół w Opalenicy ID grupy: 97/41_mf_g2 i 97/71_mf_g1 Kompetencja:
1. ŁATWOŚĆ ZADANIA (umiejętności) 2. ŁATWOŚĆ ZESTAWU ZADAŃ (ARKUSZA)
Statystyka ©M.
Podstawy statystyki, cz. II
Statystyka i opracowanie wyników badań
1 Analiza wyników sprawdzianu ‘2014 Zespół Szkolno-Przedszkolny w Krowiarkach – XI 2014 – XI 2014 Opracował: J. Pierzchała.
Analiza struktury na podstawie parametrów klasycznych i pozycyjnych
Co to jest dystrybuanta?
Wnioskowanie statystyczne
STATYSTYKA Pochodzenie nazwy:
Statystyka medyczna Piotr Kozłowski
Podstawowe pojęcia i terminy stosowane w statystyce
Statystyczna analiza danych w praktyce
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Statystyczna analiza danych
Średnia arytmetyczna, mediana i dominanta
Statystyczna analiza danych
ze statystyki opisowej
SKALA CIĄGŁA I SKOKOWA.
Grupowanie danych statystycznych „ Człowiek – najlepsza inwestycja”
Halina Klimczak Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu WYKŁAD 2 ZMIENNE GRAFICZNE SKALA CIĄGŁA I SKOKOWA.
STATYSTYKA – kurs podstawowy wykład 2 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Parametry rozkładów Metodologia badań w naukach behawioralnych II.
Statystyka Wykłady dla II rok Geoinformacji rok akademicki 2012/2013
Jak mierzyć zróżnicowanie zjawiska?
Małgorzata Podogrodzka, SGH ISiD
Statystyka matematyczna
Radosław Hołówko Konsultant: Agnieszka Pożyczka
Jednorównaniowy model regresji liniowej
Estymacja i estymatory
MIARY STATYSTYCZNE Warunki egzaminu.
Zapis prezentacji:

W dalszej części zajęć wyróżniać będziemy następujące rodzaje szeregów: szereg szczegółowy szereg rozdzielczy przedziałowy szereg rozdzielczy punktowy

Szereg szczegółowy

Szereg rozdzielczy przedziałowy

Szereg rozdzielczy punktowy

Miary i wskaźniki służące do oceny badanej cechy

Miary pozycyjne Miary pozycyjne są rzeczywistymi wartościami badanej cechy statystycznej występujące w uporządkowanym szeregu statystycznym, wybrane ze względu na zajmowaną pozycję w tym szeregu. Do miar pozycyjnych zalicza się przede wszystkim wartość modalną (dominantę) i medianę

Wartość modalna (dominanta) Wartość modalna (Mo) jest to wartość cechy, która najczęściej (najliczniej) występuje w badanej zbiorowości statystycznej. Można, stwierdzić, że jest to wartość typowa dla tej zbiorowości. Wartość modalną przedstawiać będziemy następująco: Mo = xd gdzie xd wartość cechy, dla której ni = max Przykład Zbadano cenę paliwa E-95 na 9 stacjach benzynowych w Warszawie. 3,5 3,7 3,6 3,7 3,6 3,8 3,6 3,9 3,8 ile wynosi wartość modalna ceny paliwa 3,5 3,6 3,6 3,6 3,7 3,7 3,8 3,8 3,9 Mo = 3,6

Wartość modalna (dominanta) Jeżeli materiał statystyczny podany jest w postaci szeregu rozdzielczego przedziałowego, znajdujemy najpierw przedział w o największej liczebności. Następnie wyznaczamy wartość modalną na podstawie następującego wzoru interpolacyjnego. gdzie: xDd — dolna granica przedziału wartości modalnej nd — liczebność przedziału wartości modalnej nd-1 — liczebność przedziału poprzedzającego przedział wartości modalnej nd+1 — liczebność przedziału następującego po przedziale wartości modalnej ld — rozpiętość przedziału wartości modalnej.

Wartość modalna (dominanta) wyznaczanie metodą graficzną xi

Miary i wskaźniki służące do oceny badanej cechy

Mediana (wartość środkowa) Jest to wartość cechy, która rozdziela zbiorowość na dwie równe części, zajmując środkową pozycję w szeregu statystycznym.

Mediana (wartość środkowa) gdy n jest nieparzyste gdy n jest parzyste

Dysponujemy zbiorem informacji o liczbie wyrobów wytworzonych na siedmiu stanowiskach pracy: 101, 92, 95, 98, 96, 94, 97 Wyznacz medianę Przypadek gdy n – nieparzyste 92, 94, 95, 96, 97, 98, 101

Dysponujemy zbiorem informacji o liczbie wyrobów wytworzonych na siedmiu stanowiskach pracy: 101, 92, 95, 98, 96, 94, 97, 88 Wyznacz medianę Przypadek gdy n – parzyste 88, 92, 94, 95, 96, 97, 98, 101

Me

Mediana Dla szeregu rozdzielczego przedziałowego, najpierw wyznacza się przedział klasowy mediany. Przy wyznaczaniu tego przedziału korzystamy z szeregu kumulacyjnego (szereg powstały w wyniku narastającego sumowania liczebności poszczególnych klas). Następnie stosujemy następujący wzór przybliżający wartość mediany: xDM – dolna granica przedziału klasowego mediany, lM – rozpiętość przedziału klasowego mediany, nM – liczba jednostek obserwacji w przedziale klasowym mediany PMe – pozycja mediany w szeregu statystycznym - łączna liczba obserwacji w klasach poprzedzających klasę zawierającą medianę, czyli liczebność skumulowana przedziałów klasowych poprzedzających przedział mediany

Liczebność skumulowana 100 350 750 1250 1600 1800

Liczebność skumulowana 100 350 750 1250 1600 1800

Mediana wyznaczanie metodą graficzną nsk PMe Me xi

Miary pozycyjne wyższych rzędów Mediana dzieli zbiorowość na równe dwie części, a więc informuje, poniżej i powyżej jakiej wartości cechy znajduje się 50% zbiorowości. Według tej samej zasady można podzielić zbiorowość na większą liczbę części. Wartości te nazywamy kwantylami (od słowa „kwant”). W zależności od liczby części, na jakie dzieli się zbiór wartości badanej cechy, otrzymujemy konkretne kwantyle. Najczęściej stosowane są: kwartyle – dzielą szereg statystyczny na 4 części (jest ich 3) decyle – dzielą szereg statystyczny na 10 części (jest ich 9) centyle – dzielą szereg statystyczny na 100 części (jest ich 99).

Kwantyle oznaczać będziemy następująco: Qb,v gdzie: b – numer kwantyla, v – rząd kwantyla, tzn. dla kwartyli v = 4, dla decyli v = 10, a dla centyli v = 100. KWARTYLE pierwszy element w zbiorze ostatni element w zbiorze Q1,4 Q2,4 Q3,4

Q1,4 Me Q3,4

Miary i wskaźniki służące do oceny badanej cechy rozstęp odchylenie ćwiartkowe współczynnik skośności

Wariancja Wariancja jest średnią arytmetyczną kwadratów odchyleń wartości cechy od średniej. Wariancja dla szeregu szczegółowego Wariancja dla szeregu rozdzielczego przedziałowego Wariancja dla szeregu rozdzielczego punktowego

Odchylenie standardowe Odchylenie standardowe jest pierwiastkiem kwadratowym średniej arytmetycznej, kwadratów odchyleń wartości cechy od średniej. Odchylenie standardowe jest pierwiastkiem z wariancji. dla szeregu szczegółowego dla szeregu rozdzielczego przedziałowego dla szeregu rozdzielczego punktowego

Wiek Liczba 10-20 100 20-30 250 30-40 400 40-50 500 50-60 350 60-70 200 Razem 1800 15 1500 784 78400 25 6250 324 81000 35 14000 64 25600 45 22500 4 2000 55 19250 144 50400 65 13000 484 96800 76500 334200

Obszar wartości charakterystycznych badanej cechy statystycznej ni Obszar wartości charakterystycznych badanej cechy statystycznej Obszar wartości badanej cechy statystycznej Obszar wartości typowych badanej cechy statystycznej s s s s s s 68% xi 95% 99%

Odchylenie przeciętne Odchylenie przeciętne jest średnią arytmetyczną odchyleń poszczególnych wartości cechy od średniej. dla szeregu szczegółowego dla szeregu rozdzielczego przedziałowego dla szeregu rozdzielczego punktowego

Miary i wskaźniki służące do oceny badanej cechy rozstęp odchylenie ćwiartkowe współczynnik skośności

Odchylenie przeciętne Odchylenie przeciętne jest średnią arytmetyczną odchyleń poszczególnych wartości cechy od średniej. dla szeregu szczegółowego dla szeregu rozdzielczego przedziałowego dla szeregu rozdzielczego punktowego