Multimedialny kurs fizyki - mechanika klasyczna

Slides:



Advertisements
Podobne prezentacje
WYKŁAD 2 I. WYBRANE ZAGADNIENIA Z KINEMATYKI II. RUCH KRZYWOLINIOWY
Advertisements

Na szczycie równi umieszczano obręcz, kulę i walec o tych samych promieniach i masach. Po puszczeniu ich razem staczają się one bez poślizgu. Które z tych.
Wykład 4 2. Przykłady ruchu 1.5 Prędkość i przyśpieszenie c.d.
Wykład 20 Mechanika płynów 9.1 Prawo Archimedesa
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Dynamika.
Zasady dynamiki Newtona - Mechanika klasyczna
Temat: Ruch jednostajny
WEKTORY Każdy wektor ma trzy zasadnicze cechy: wartość (moduł), kierunek i zwrot. Wartością wektora nazywamy długość odcinka AB przedstawiającego ten wektor.
Ruch i jego parametry Mechanika – prawa ruchu ciał
Dynamika Całka ruchu – wielkość, będąca funkcją położenia i prędkości, która w czasie ruchu zachowuje swoją wartość. Energia, pęd i moment pędu - prawa.
KINEMATYKA Kinematyka zajmuje się związkami między położeniem, prędkością i przyspieszeniem badanej cząstki – nie obchodzi nas, skąd bierze się przyspieszenie.
DYNAMIKA.
Kinematyka.
I prawo dynamiki Jeśli cząstka nie oddziałuje z innymi cząstkami, to można znaleźć taki inercjalny układ odniesienia w którym przyspieszenie cząstki jest.
Siły zachowawcze Jeśli praca siły przemieszczającej cząstkę z punktu A do punktu B nie zależy od tego po jakim torze poruszała się cząstka, to ta siła.
BRYŁA SZTYWNA.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
FIZYKA dla studentów POLIGRAFII Wykład 2
FIZYKA dla studentów POLIGRAFII Wykład 3
DYNAMIKA Zasady dynamiki
Nieinercjalne układy odniesienia
DYNAMIKA Oddziaływania. Siły..
Napory na ściany proste i zakrzywione
Biomechanika przepływów
Kinematyka SW Sylwester Wacke
T Zsuwanie się bez tarcia Zsuwanie się z tarciem powrót.
Opracowała Diana Iwańska
Wykład 3 Dynamika punktu materialnego
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Warszawa, 8 października 2008
podsumowanie wiadomości
Oddziaływania w przyrodzie
Bez rysunków INFORMATYKA Plan wykładu ELEMENTY MECHANIKI KLASYCZNEJ
MECHANIKA I WYTRZYMAŁOŚĆ MATERIAŁÓW
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Z Wykład bez rysunków ri mi O X Y
RÓWNIA POCHYŁA PREZENTACJA.
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Dynamika układu punktów materialnych
RUCH PŁASKI BRYŁY MATERIALNEJ
siła cz.I W części I prezentacji: definicja siły jednostka siły
DYNAMIKA Dynamika zajmuje się badaniem związków zachodzących pomiędzy ruchem ciała a siłami działającymi na ciało, będącymi przyczyną tego ruchu Znając.
Siły, zasady dynamiki Newtona
Układy sił.
siła cz.IV W części IV prezentacji: treść II zasady dynamiki
Dynamika.
PLAN WYKŁADÓW Podstawy kinematyki Ruch postępowy i obrotowy bryły
Ruch jednostajny prostoliniowy i jednostajnie zmienny Monika Jazurek
Dynamika ruchu płaskiego
Ruch jednowymiarowy Ruch - zmiana położenia jednych ciał względem innych, które nazywamy układem odniesienia. Uwaga: to samo ciało może poruszać się względem.
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Siły bezwładności Dotychczas poznaliśmy kilka sił występujących w przyrodzie. Wszystkie te siły nazywamy siłami rzeczywistymi, ponieważ możemy je zawsze.
Zasady dynamiki Newtona. Małgorzata Wirkowska
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Dynamika punktu materialnego
Dynamika ruchu obrotowego
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych
Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Zjawiska ruchu Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Projektowanie Inżynierskie
Zjawiska ruchu Ruch – jedno w najczęściej obserwowanych zjawisk fizycznych Często ruch zachodzi z tak dużą lub tak małą prędkością i w tak krótkim lub.
Reinhard Kulessa1 Wykład Ruch rakiety 5 Ruch obrotowy 5.1 Zachowanie momentu pędu dla ruchu obrotowego punktu materialnego Wyznaczanie środka.
Dynamika bryły sztywnej
Wówczas równanie to jest słuszne w granicy, gdy - toru krzywoliniowego nie można dokładnie rozłożyć na skończoną liczbę odcinków prostoliniowych. Praca.
4. Praca i energia 4.1. Praca Praca wykonywana przez stałą siłę jest iloczynem skalarnym tej siły i wektora przemieszczenia (4.1) Ft – rzut siły na kierunek.
3. Siła i ruch 3.1. Pierwsza zasada dynamiki Newtona
Prawa ruchu ośrodków ciągłych
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU
Prawa ruchu ośrodków ciągłych
2. Ruch 2.1. Położenie i tor Ruch lub spoczynek to pojęcia względne.
Zapis prezentacji:

Multimedialny kurs fizyki - mechanika klasyczna

Mechanika klasyczna – dział mechaniki w fizyce opisujący ruch ciał (kinematyka), wpływ oddziaływań na ruch ciał (dynamika) oraz badaniem równowagi ciał materialnych (statyka). Mechanika klasyczna oparta jest na prawach ruchu (zasadach dynamiki) sformułowanych przez Isaaca Newtona, dlatego też jest ona nazywana "mechaniką Newtona". Mechanika klasyczna wyjaśnia poprawnie zachowanie się większości ciał w naszym otoczeniu.

Do końca XIX wieku mechanika klasyczna była uznawana za teorię dokładną, na początku XX wieku okazała się niepoprawna w niektórych sytuacjach. W celu wyjaśnienia niezgodności powstały nowe działy mechaniki: mechanika relatywistyczna wraz z jej teoriami – ogólną teorią względności i szczególną teorią względności, opisujące zachowanie się obiektów poruszających się z prędkością porównywalną z prędkością światła, mechanika kwantowa opisującą zachowanie się mikroskopijnych obiektów (cząsteczki, atomy, cząstki elementarne).

Wymienione teorie w pewnym sensie obalają mechanikę klasyczną, choć są zbudowane na jej bazie pojęciowej i ją uzupełniają. Pomimo to, mechanika klasyczna jest nadal bardzo użyteczna, ponieważ: jest prostsza w stosowaniu niż inne teorie, z pewnymi przybliżeniami może być stosowana w szerokim zakresie, stanowi podstawę pojęciową dla innych teorii.

Mechanika klasyczna może być używana do opisu ruchu zarówno obiektów rozmiaru człowieka (np. piłka, samochód), jak i wielu astronomicznych obiektów (np. planety, galaktyki), a także obiektów mikroskopijnej wielkości (np. cząsteczek organicznych, a nawet w przybliżeniu i w ograniczonym zakresie do cząstek elementarnych). Przykładowo: ruch elektronu wynikający z mechaniki klasycznej poprawnie opisuje działanie mikroskopu elektronowego, dopiero do wyjaśnienia ograniczeń rozdzielczości mikroskopu elektronowego potrzebujemy odwołania do mechaniki kwantowej, a wyjaśnienie działania mikroskopu elektronowego z użyciem pojęć mechaniki kwantowej byłoby trudne. W ostatnich latach wzrastającym zainteresowaniem cieszy się dział mechaniki klasycznej, a mianowicie dynamika nieliniowa. Kluczowym pojęciem jest tu chaos, a głównym narzędziem – nieliniowe równania różniczkowe i iteracyjne.

W mechanice klasycznej można wydzielić poddziedziny: kinematyka – opisująca ruch jako zagadnienie geometryczne, statyka – zajmująca się ciałami nie poruszającymi się i warunkami pozostania ciał w spoczynku (równowadze), dynamika – opisująca ruch ciał oraz zmiany ruchu ciał pod wpływem oddziaływań.

Kinematyka (gr. kínēma "ruch") - dział mechaniki zajmujący się badaniem geometrycznych właściwości ruchu ciał bez uwzględniania ich cech fizycznych (np. masy) i działających na nie sił. W zależności od właściwości badanych obiektów dzieli się na: kinematykę punktu materialnego i bryły sztywnej oraz kinematykę ośrodków ciągłych (odkształcalnego ciała stałego, cieczy i gazów). Pojęcie ruchu - aby opisać ruch jakiegokolwiek ciała, należy ustalić, jak zmienia się jego położenie względem innego ciała, które uznajemy za układ odniesienia. Gdy taka zmiana położenia nie zachodzi, dane ciało znajduje się w spoczynku względem tych ciał (w tym układzie odniesienia).

Symbole wielkości kinematycznych i ich jednostki v - prędkość (m/s - metr na sekundę) a - przyspieszenie (m/s² - metr na sekundę do kwadratu) s - droga (m - metr) t - czas (s - sekundy)

Prędkość- definiujemy jako zmianę położenia ciała w jednostce czasu Prędkość- definiujemy jako zmianę położenia ciała w jednostce czasu. Prędkość stała: Jeżeli wskazania prędkościomierza samochodu nie zmieniają się to oznacza, że samochód porusza się ze stałą prędkością v, i jeżeli w pewnej chwili t0 znajdował się w położeniu x0 to po czasie t znajdzie się w położeniu x: skąd

Zależność między położeniem x i czasem t pokazana jest na rysunku poniżej dla dwóch ciał (np. pojazdów). Jak wynika ze wzoru (2.1) nachylenie wykresu x(t) przedstawia prędkość danego ciała. Różne nachylenia wykresów x(t) odpowiadają więc różnym prędkościom. Prędkość v (wektor) może być dodatnia albo ujemna; jej znak wskazuje kierunek ruchu. Wektor v dodatni - ruch w kierunku rosnących x, ujemny to ruch w kierunku malejących x.

Prędkość chwilowa: Gdy samochód przyspiesza lub hamuje to wskazania prędkościomierza zmieniają się i nie możemy mówić o "jednej" stałej prędkości. Prędkość zmienia się i w każdej chwili jest inna. Nie można wtedy stosować wzoru (2.1) chyba, że ograniczymy się do bardzo małych wartości x - x0 (Δx) czyli również bardzo małego przedziału czasu Δt = t - t0 (chwili). Prędkość chwilową w punkcie x otrzymamy gdy Δt dąży do zera: Tak definiuje się pierwszą pochodną więc: Prędkość chwilowa jest pochodną drogi względem czasu

Nachylenie krzywej x(t) ponownie przedstawia prędkość v, a znajdujemy je (zgodnie z definicją pochodnej) jako nachylenie stycznej do wykresu x(t), w danym punkcie tj. dla danej chwili t (rysunek poniżej). Nachylenie krzywej x(t) jest prędkością chwilową

Prędkość średnia: Często określenie zależności x(t) nie jest możliwe, np. przy oszacowaniu czasu dojazdu do wybranej miejscowości nie jesteśmy w stanie przewidzieć wszystkich parametrów podróży wpływających na prędkość takich jak natężenie ruchu, konieczność ograniczenia prędkości w terenie zabudowanym itp. Posługujemy się wtedy pojęciem prędkości średniej . Prędkość średnia ciała w przedziale czasu t jest zdefiniowana jako:

Wzory ogólne: Prędkość Przyspieszenie

Statyka - drugi po kinetyce dział dynamiki (będącej działem mechaniki), zajmujący się równowagą układów sił działających na ciało pozostające w spoczynku lub poruszające się ruchem jednostajnym i prostoliniowym. W przeciwieństwie do kinetyki, statyka zajmuje się zrównoważonymi układami, w których nie powstają siły bezwładności. Jeżeli układ sił działających na ciało spełnia I. zasadę dynamiki Newtona to ciało nie doznaje przyśpieszenia i pozostaje w spoczynku lub porusza się ruchem jednostajnym i prostoliniowym. Takie ciało nazywa się statycznym lub mówi się o nim, że zachowuje się statycznie. Opisem działających na nie sił zajmuje się statyka. W przeciwnym przypadku mamy do czynienia z dynamiką: ciało doznaje przyśpieszenia zmieniającego prędkość lub kierunek jego ruchu - pojawiają się siły bezwładności.

Statyka oprócz ciał stałych zajmuje się m. in Statyka oprócz ciał stałych zajmuje się m.in. równowagą cieczy (hydrostatyka) i gazów (aerostatyka). Jednym z najogólniejszych twierdzeń dotyczących równowagi punktów materialnych jest zasada Lagrange'a.

Zasada Lagrange'a (także zasada prac wirtualnych lub zasada prac przygotowanych) – podstawowe twierdzenie statyki dotyczące równowagi układu punktów materialnych. Mówi ona, że w położeniu równowagi dla dowolnego małego przesunięcia punktów układu zgodnego z więzami suma prac wykonanych nad układem przy tym przesunięciu przez siły zewnętrzne jest zerowa. W postaci matematycznej zasada wyrażona jest następująco: dany jest układ N puntów materialnych. Położenie układu w przestrzeni konfiguracyjnej opisywane jest przez wektor x o współrzędnych Składowe wypadkowej siły zewnętrznej działającej na układ oznaczmy przez:

Dodatkowo ruch układu jest ograniczony przez więzy opisywane przez n równań W takiej sytuacji warunkiem koniecznym i wystarczającym na to, by pewien, spełniający równania więzów, punkt przestrzeni konfiguracyjnej był punktem równowagi układu, jest by w punkcie tym zachodziło: dla dowolnych liczb δxj spełniających warunki:

Pojęcia podstawowe: 1. Siła - wynik wzajemnego, mechanicznego oddziaływania na siebie ciał. Siła jest wielkością wektorową. Siła może być skupiona (w punkcie) lub rozłożona (wzdłuż linii, na powierzchni lub w objętości). 2. Więzy - warunki (najczęściej geometryczne) ograniczające swobodę poruszania się ciała. 3. Stopień swobody - możliwość wykonywania przez ciało ruchu (przesuwnego - translacyjnego lub obrotowego - rotacyjnego), którą odbiera odpowiednio nałożony, pojedynczy więz.

Większość operacji w statyce dokonuje się na siłach, ich rzutach na wybrane kierunki oraz na wypadkowych układu sił. Siła skupiona jest wielkością wektorową więc operacje na siłach można wykonać wykreślnie za pomocą wektorów. Obowiązują tu zasady dodawania, odejmowania i mnożenia wektorów. Siła, tak jak reprezentujący ją wektor, ma następujące cechy: określony kierunek (nie mylić ze zwrotem) - kierunek prostej, wzdłuż której działa zwrot - taki jak wskazuje strzałka wektora. określoną wartość - długość wektora (moduł). punkt przyłożenia.

Aksjomaty statyki : Aksjomat 1 Dwie siły przyłożone do ciała sztywnego równoważą się wzajemnie, jeżeli mają jednakowe wartości (moduły - długości wektorów), działają wzdłuż jednej prostej i mają przeciwne zwroty (czyli zerowa jest ich suma wektorowa - ich wypadkowa). Ten aksjomat wykorzystuje się do sprawdzenia, czy ciało jest w równowadze (spoczynku) pod działaniem układu dwóch sił lub układu sił dających się zredukować (zgodnie z aksjomatem 3 - za pomocą kolejnych wypadkowych) do dwóch sił.

Aksjomat 2 Jeżeli do układu sił dodamy lub odejmiemy układ sił równoważny zeru (spełniający aksjomat 1), to działanie na ciało wyjściowego układu sił nie ulegnie zmianie. Czasami ułatwia to operację na wektorach sił bez zmiany równowagi ciała, na które one działają. W warunku równowagi sumy rzutów sił na dowolny kierunek, oprócz składników odpowiadających rzutom wyjściowego układu sił, po obu stronach równania wystąpią również składowe odpowiadające dodanym (lub odjętym) siłom. Przeniesienie ich na jedną stronę równania spowoduje ich wyzerowanie, dając równanie identyczne jak dla układu wyjściowego.

Aksjomat 3 Wypadkowa dwóch sił przechodzi przez punkt ich przecięcia i wyraża się długością przekątnej równoległoboku zbudowanego na tych siłach (wypadkowa dwóch sił jest wektorową sumą swoich dwóch składowych). Dzięki temu aksjomatowi analizę równowagi układu wielu sił można uprościć do równowagi kilku ich wypadkowych. W przypadku szczególnym składowe są równoległe a ich kierunki nie pokrywają się. Wówczas ich przecięcie znajduje się w punkcie niewłaściwym w nieskończoności a określenie ich wypadkowych jest trudniejsze - prowadzi np. do siły i momentu.

Aksjomat 4 Wszelkiemu działaniu siły odpowiada równe i przeciwne skierowane przeciwdziałanie (wówczas układ pozostaje statyczny). Ten aksjomat wykorzystuje się do poszukiwania kierunku, zwrotu, wartości lub punktu przyłożenia siły (np. wypadkowej sił reakcji), która zrównoważy inną, działającą na ciało siłę (lub wypadkową innego układu sił).

Aksjomat 5 Równowaga ciała odkształcalnego nie zostanie naruszana jeżeli to ciało stanie się ciałem sztywnym. W statyce konstrukcji przyjmuje się tzw. zasadę zesztywnienia. Upraszcza ona badanie równowagi konstrukcji pod działaniem obciążeń, tak, jakby obciążenie nie powodowało odkształceń a konstrukcja pozostawała w tzw. konfiguracji pierwotnej. Stosując takie założenie wyznacza się reakcje podpór i siły wewnętrzne, które dopiero w dalszej kolejności umożliwiają określenie deformacji konstrukcji - jej odkształceń i przemieszczeń.

Przemieszczenia konstrukcji wiążą się także ze zmianą położenia jej obciążeń. Układając dla tak wyznaczonej konfiguracji odkształconej warunki równowagi szacuje się błędy obliczeń konstrukcji jako ciała sztywnego. W większości przypadków konstrukcji - wykonanych z materiałów tak sztywnych jak stal czy beton - uzyskuje się zadowalające wyniki. Jeżeli jednak błędy są za duże mówi się o konstrukcji nieliniowej geometrycznie a obliczone przemieszczenia traktuje jako pierwsze oszacowanie. Następne, lepsze przybliżenie otrzymuje się z warunków równowagi dla tej pierwszej konfiguracji odkształconej. Wyniki tych obliczeń określają nową konfigurację konstrukcji a iteracyjne powtarzanie czynności pozwala na uzyskanie wymaganej dokładności.

Aksjomat 6 Ciało nieswobodne możemy traktować jak ciało swobodne jeżeli myślowo uwolnili się je od więzów, zastępując ich działanie odpowiednimi reakcjami. W statyce konstrukcji ten aksjomat wykorzystuje się do wyznaczenia sił reakcji więzów, jako sił biernych, powstałych w więzach podporowych i wewnętrznych na skutek działania sił czynnych - obciążeń.

Warunki równowagi: Zadaniem statyki jest badanie równowagi sił działających na ciało. Umożliwia to sprawdzenie, czy ciało pod działaniem sił jest statyczne albo określenie wartości sił lub innych wielkości tak, aby ciało pozostało statyczne (pozostało w spoczynku lub poruszało się jednostajnie i prostoliniowo - I. zasada dynamiki Newtona). Tym celom służą warunki równowagi statycznej (nie uwzględniającej sił bezwładności): -sumy rzutów sił na wybrane kierunki, -sumy momentów sił względem wybranych punktów.

Dynamika – dział mechaniki zajmujący się ruchem ciał materialnych pod działaniem sił. Głównym zadaniem dynamiki jest opis ruchu ciał pod działaniem samych sił. Do tego służą trzy rodzaje dynamicznych równań ruchu. W zależności od tego, jakim modelem mechanicznym dynamika się zajmuje, wyróżniamy dynamikę punktu materialnego, bryły sztywnej, dynamikę płynów itp. Ogólne zasady dynamiki sformułował Newton, w swoim dziele "Principia" – były to trzy zasady dynamiki rządzące ruchem ciał (punktów materialnych).

Zasady dynamiki Newtona: Podstawowa teoria, która pozwala przewidywać ruch ciał, składa się z trzech równań, które nazywają się zasadami dynamiki Newtona. Sformułowanie pierwszej zasady dynamiki Newtona: Ciało, na które nie działa żadna siła (lub gdy siła wypadkowa jest równa zeru) pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej.

Siła wypadkowa Fwyp jest sumą wektorową wszystkich sił działających na ciało. Jeżeli Fwyp = 0 to również przyspieszenie ciała a = 0, a to oznacza, że nie zmienia się ani wartość ani kierunek prędkości tzn. ciało jest w stanie spoczynku lub porusza się ze stałą co do wartości prędkością po linii prostej. Zgodnie z pierwszą zasadą dynamiki nie ma rozróżnienia między ciałami spoczywającymi i poruszającymi się ze stałą prędkością. Nie ma też różnicy pomiędzy sytuacją gdy nie działa żadna siła i przypadkiem gdy wypadkowa wszystkich sił jest równa zeru. Sformułowanie drugiej zasady dynamiki Newtona: Tempo zmian pędu ciała jest równe sile wypadkowej działającej na to ciało. Dla ciała o stałej masie sprowadza się to do iloczynu masy i przyspieszenia ciała.

Sformułowanie trzeciej zasady dynamiki Newtona: Gdy dwa ciała oddziałują wzajemnie, to siła wywierana przez ciało drugie na ciało pierwsze jest równa i przeciwnie skierowana do siły, jaką ciało pierwsze działa na drugie.

Pierwsza zasada dynamiki wydaje się być szczególnym przypadkiem drugiej bo gdy a = 0 to i Fwyp = 0 . Przypisujemy jej jednak wielką wagę dlatego, że zawiera ważne pojęcie fizyczne: definicję inercjalnego układu odniesienia. Pierwsza zasada dynamiki stwierdza, że jeżeli na ciało nie działa żadna siła (lub gdy siła wypadkowa jest równa zeru) to istnieje taki układ odniesienia, w którym to ciało spoczywa lub porusza się ruchem jednostajnym prostoliniowym. Taki układ nazywamy układem inercjalnym.

Układy inercjalne są tak istotne bo we wszystkich takich układach ruchami ciał rządzą dokładnie te sama prawa. Większość omawianych zagadnień będziemy rozwiązywać właśnie w inercjalnych układach odniesienia. Zazwyczaj przyjmuje się, że są to układy, które spoczywają względem gwiazd stałych ale układ odniesienia związany z Ziemią w większości zagadnień jest dobrym przybliżeniem układu inercjalnego. Ponieważ przyspieszenie ciała zależy od przyspieszenia układu odniesienia (od przyspieszenia obserwatora), w którym jest mierzone więc druga zasada dynamiki jest słuszna tylko, gdy obserwator znajduje się w układzie inercjalnym. Inaczej mówiąc, prawa strona równania F = ma zmieniałaby się w zależności od przyspieszenia obserwatora.

Pierwsza i druga zasada dynamiki Newtona w oryginalnym wydaniu Principia Mathematica z 1687 r.

Autorzy: Łukasz Sapieja,Marek Serwata gr 404B