Prognozowanie na podstawie modelu ekonometrycznego

Slides:



Advertisements
Podobne prezentacje
Przykład liczbowy Rozpatrzmy dwuwymiarową zmienną losową (X,Y), gdzie X jest liczbą osób w rodzinie, a Y liczbą izb w mieszkaniu. Niech f.r.p. tej zmiennej.
Advertisements

Modele szeregów czasowych z tendencją rozwojową
KORELACJA I REGRESJA WIELOWYMIAROWA
Ocena dokładności i trafności prognoz
Metody ekonometryczne
dr Małgorzata Radziukiewicz
Kredyty dyskontowe 1.Wstęp 2.Oprocentowanie proste - stopa stała
Treść wykładu Wstęp Przewidywanie - prognoza Klasyfikacja prognoz
BUDOWA MODELU EKONOMETRYCZNEGO
Ekonometria prognozowanie.
Metody ekonometryczne
Metody ekonometryczne
Podstawowe pojęcia prognozowania i symulacji na podstawie modeli ekonometrycznych Przewidywaniem nazywać będziemy wnioskowanie o zdarzeniach nieznanych.
Ekonometria wykladowca: dr Michał Karpuk
Analiza korelacji.
Prognozowanie na podstawie sezonowych szeregów czasowych
Prognozowanie na podstawie szeregów czasowych
Wprowadzenie do statystycznej analizy danych (SPSS)
Rozdział XI -Kredyt ratalny
Rozdział III - Inflacja Wstęp
Linear Methods of Classification
Hipotezy statystyczne
Liniowy Model Tendencji Rozwojowej Szeregów Czasowych
Metoda najmniejszych kwadratów dla jednej zmiennej objaśniającej
Testowanie hipotez statystycznych
Ekonometria szeregów czasowych
i jak odczytywać prognozę?
Jak mierzyć i od czego zależy?
Ekonometria. Co wynika z podejścia stochastycznego?
Rozkłady wywodzące się z rozkładu normalnego standardowego
Irena Woroniecka EKONOMIA MENEDŻERSKA - dodatek do W2
Prognozowanie z wykorzystaniem modeli ekonometrycznych
Modelowanie ekonometryczne
Badania Operacyjne i Ekonometria. Literatura podstawowa 1.M.Anholcer, H.Gaspars, A.Owczrkowski Przykłady i zadania z badań operacyjnych i ekonometrii.
Statystyka – zadania 4 Janusz Górczyński.
Prognozowanie (finanse 2011)
1 Kilka wybranych uzupełnień do zagadnień regresji Janusz Górczyński.
Finanse 2009/2010 dr Grzegorz Szafrański pokój B106 Termin konsultacji poniedziałek:
Kilka wybranych uzupelnień
Ekonometryczne modele nieliniowe
Przedmiot: Ekonometria Temat: Szeregi czasowe. Dekompozycja szeregów
Ekonometryczne modele nieliniowe
 Ekonometria – dziedzina zajmująca się wykorzystaniem specyficznych metod statystycznych dostosowanych do badań nieeksperymentalnych.  Ekonometria to.
Ekonometryczne modele nieliniowe
Wnioskowanie statystyczne
Ekonometria stosowana
D. Ciołek EKONOMETRIA – wykład 5
D. Ciołek EKONOMETRIA – wykład 6
WIELORÓWNANIOWE MODELE EKONOMETRYCZNE
Dr Ewelina Sokołowska, UG prof. dr hab. Jerzy Witold Wiśniewski, UMK
Ekonometria Metody estymacji parametrów strukturalnych modelu i ich interpretacja dr hab. Mieczysław Kowerski.
Model trendu liniowego
Treść dzisiejszego wykładu l Weryfikacja statystyczna modelu ekonometrycznego –błędy szacunku parametrów, –istotność zmiennych objaśniających, –autokorelacja,
Treść dzisiejszego wykładu l Klasyfikacja zmiennych modelu wielorównaniowego l Klasyfikacja modeli wielorównaniowych l Postać strukturalna i zredukowana.
Ekonometria stosowana Heteroskedastyczność składnika losowego Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Treść dzisiejszego wykładu l Wprowadzenie do ekonometrii. l Model ekonomiczny i ekonometryczny. l Klasyfikacja modeli ekonometrycznych. l Klasyfikacja.
Treść dzisiejszego wykładu l Szeregi stacjonarne, l Zintegrowanie szeregu, l Kointegracja szeregów.
Modele nieliniowe sprowadzane do liniowych
STATYSTYKA – kurs podstawowy wykład 11
Treść dzisiejszego wykładu l Metoda Najmniejszych Kwadratów (MNK) l Współczynnik determinacji l Koincydencja l Kataliza l Współliniowość zmiennych.
Metody ekonometryczne dla NLLS
KORELACJA I REGRESJA WIELOWYMIAROWA
Ekonometria stosowana
EKONOMETRIA W3 prof. UG, dr hab. Tadeusz W. Bołt
EKONOMETRIA Wykład 2 prof. UG, dr hab. Tadeusz W. Bołt
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Model ekonometryczny z dwiema zmiennymi
MNK – podejście algebraiczne
Korelacja i regresja liniowa
Zapis prezentacji:

Prognozowanie na podstawie modelu ekonometrycznego

Ogólna postać modelu i prognozy

Założenia teorii prognozy ekonometrycznej znany musi być „dobry model” w sensie wcześniej podanych kryteriów oceny jakości modelu, występować musi stabilność relacji strukturalnych w czasie, co oznacza, że postać modelu i wzajemne oddziaływanie zmiennych są stałe, aż do momentu lub okresu prognozowanego włącznie, składnik losowy musi mieć stały rozkład w czasie, co oznacza, że nie pojawią się żadne inne ważne czynniki oddziałujące na prognozowane zjawisko, dotychczasowe zaś nie zmienią swego oddziaływania, zgodnie z założeniem 2, znane muszą być wartości zmiennych objaśniających (lub ich rozkłady prawdopodobieństwa) w okresie lub momencie prognozowanym, model może być ekstrapolowany poza jego dziedzinę.

Błąd ex ante prognozy Dla modelu liniowego ze znanymi wartościami zmiennych objaśniających dla okresu prognozy: Przedział wiarygodności prognozy:

Przykłady prognoz na podstawie modeli ekonometrycznych Na podstawie danych z 12 miesięcy zbudowano model opisujący wielkość obrotów w tys. zł zakładu usługowego (zmienna Y) w zależności od wydatków na reklamę w tys. zł (X). Po oszacowaniu parametrów modelu otrzymano następujące charakterystyki: Wyznaczyć prognozę obrotów na kolejny miesiąc wiedząc, że w ostatnim miesiącu obroty te wyniosły 10 tys. zł, wydatki na reklamę 2 tys. zł, a macierz wariancji-kowariancji ocen parametrów modelu ma postać: .

Prognozę na kolejny miesiąc wyznaczymy podstawiając znane wartości zmiennych objaśniających do równania regresji: . Zatem w kolejnym miesiącu spodziewane są obroty wysokości 11,5 tys. zł. Wyznaczymy teraz przedział wiarygodności dla tej prognozy, co wymaga oszacowania wielkości błędu standardowego prognozy ex ante ze wzoru: Z prawdopodobieństwem 0,95 wielkość obrotów w następnym miesiącu będzie się mieścić w przedziale (8,97 ; 14,03) [tys. zł].

Przykład 2 Bank „BZSiP” zlecił wykonanie prognozy wysokości udzielanych miesięcznie kredytów konsumpcyjnych. Na podstawie trzyletnich danych zbudowano model kwoty kredytów w tys. zł (Y) w zależności od (średniego miesięcznego) kursu dolara w zł (X1) oraz od stosunku rocznego oprocentowania kredytu do stopy inflacji w miesiącu poprzedzającym udzielanie kredytu (X2): . Wyznaczyć prognozę wysokości udzielonych kredytów na cztery kolejne miesiące wiedząc, że przewidywany kurs dolara (wg prognoz NBP) wyniesie w kolejnych miesiącach 3,20, 3,18, 3,17, 3,17 zł. Bank zamierza w pierwszym miesiącu udzielać kredytów o stopach przekraczających inflację o 15%, zaś w następnych miesiącach o 18%. Dla okresu estymacji modelu otrzymano macierz oraz standardowy błąd szacunku zmiennej objaśnianej w wysokości 5,59 [tys. zł].

Model trendu liniowego

Model regresji ze zmiennymi sezonowymi

Model regresji ze zmiennymi czasową i sezonowymi (addytywnymi)

– oceny parametrów wyznaczone MNK Model autoregresji – oceny parametrów wyznaczone MNK

Ocena dopuszczalności prognozy Do oceny dopuszczalności prognoz stosuje się błędy prognoz – bezwzględne lub względne, w miarę możliwości ex ante, ale dla niektórych metod także błędy ex post prognozy wygasłych. Na ogół uznaje się prognozę za dopuszczalną, jeśli spodziewany błąd nie powinien przekroczyć podanej z góry i arbitralnie wartości krytycznej. Maksymalny horyzont prognozy: należący do przyszłości najdalszy moment lub okres, w którym prognoza jest dopuszczalna. Żądany horyzont prognozy: horyzont prognozy wyznaczony przez odbiorcę, nie może on jednak być dłuższy od horyzontu maksymalnego.

Względny błąd ex ante Załóżmy, że w powyższych przykładach maksymalny błąd prognozy miał wynosić 6%. W przykładzie 1 względny błąd prognozy ex ante na moment 13 zatem prognoza nie jest dopuszczalna.

Zmienne objaśniające: x*1 t x*2 t Ocena ex ante: prognoza Dla przykładu 2: Zmienne objaśniające: x*1 t 3,2 3,18 3,17 x*2 t 1,15 1,18   Ocena ex ante: prognoza 250,25 242,21 242,43 błąd bezwzględny 5,78 5,73 5,72 błąd względny 2,3% 2,4% Jak widać, wszystkie prognozy można uznać za dopuszczalne, zatem żądany horyzont prognozy jest mniejszy niż maksymalny (dopuszczalny) horyzont prognozy.

Przykład 3 Ocenić, jaki jest maksymalny horyzont prognozy dla modelu trendu liniowego szacowanego na podstawie 13 obserwacji Wiadomo, że Se = 4,3. Przyjąć, że wartość krytyczna błędu ex ante prognozy wynosi 5%.