Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Sterowalność i obserwowalność
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Systemy dynamiczne – przykłady modeli fenomenologicznych
Systemy dynamiczne 2010/2011Systemy i sygnały - klasyfikacje Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Dlaczego taki.
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Dwie podstawowe klasy systemów, jakie interesują nas
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów III
Modelowanie i identyfikacja 2013/2014 Identyfikacja rekursywna i nieliniowa I 1 Katedra Inżynierii Systemów Sterowania  Kazimierz Duzinkiewicz, dr hab.
Teoria sterowania 2013/2014Sterowanie – obserwatory zredukowane II  Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Obserwatory.
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
 Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Metody sztucznej inteligencji – Technologie rozmyte i neuronoweSystemy.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia x – stany Opis systemu za pomocą modeli przestrzeni stanu poza wielkościami/sygnałami wejścia oraz wyjścia zawiera wielkości stanu będące wielkościami wewnętrznymi na które wpływają wielkości wejściowe i które, z kolei, wpływają na wielkości wyjściowe Przedstawiane przykłady pokazały (np. czwórnik RLC, dwa kaskadowo połączone zbiorniki), że wymiar wektora stanu, równy rzędowi systemu, jest zwykle większy, a nigdy nie mniejszy od liczby wejść czy też wyjść – i jest to prawidłowość ogólna

Podane spostrzeżenie jest odbiciem faktu, że złożoność realnego świata zwykle wyklucza możliwość bezpośredniego oddziaływania na każdą wielkość stanu lub obserwowania każdej wielkości stanu Tym nie mniej, jesteśmy często zainteresowani w estymowaniu wektora stanu, który charakteryzuje złożoność działania wewnętrznych mechanizmów systemu Obserwowalność określa możliwość jednoznacznego określenia stanu początkowego systemu w oparciu pomiary przez skończony przedział czasu sygnałów wejścia i wyjścia Znaczenie: znajomość stanu początkowego i wejścia systemu pozwala zrekonstruować całą trajektorię stanu w oparciu o równania stanu

Systemy ciągłe Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

Obserwowalność systemu ciągłego liniowego stacjonarnego System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu

Wymiar macierzy sterowalności: npxn; n – wymiar stanu, p – wymiar wyjścia Dla p=1 macierz obserwowalności jest macierzą kwadratową i dla sprawdzenia obserwowalności wystarczy sprawdzić nieosobliwość macierzy obserwowalności

Policzmy macierz tranzycji Ilustracja związków sterowalności i obserwowalności systemów ciągłych oraz ich stabilności Przykład 1. Rozważmy system SISO Policzmy macierz tranzycji Przyjmijmy zerowe warunki początkowe i skokowe wejście poza tym

Korzystając z macierzy tranzycji możemy policzyć odpowiedź stanu

oraz odpowiedź wyjścia

Odpowiedź wyjścia stabilizuje się

ale odpowiedź stanu wykazuje niestabilność Złe zachowanie stanu zostało „ukryte” na wyjściu – nie jest widoczne na wyjściu

Zbadajmy obserwowalność systemu Mamy n=2, p=1 oraz Zatem System jest nieobserwowalny

Przykład 2. Rozważmy system SISO Sprawdzimy obserwowalność systemu Mamy n=2, p=1 oraz

Zatem System jest obserwowalny Policzmy macierz tranzycji

która pozwoli przyjmując zerowe warunki początkowe i skokowe wejście poza tym ustalić odpowiedź stanu i odpowiedź wyjścia

Zarówno odpowiedź stanu i odpowiedź wyjścia przy t jest ograniczona (stabilizuje się)

Zmieńmy warunek początkowy i wyznaczmy odpowiedź stanu i wyjścia

Ponieważ system jest obserwowalny, system powinien „wyczuć” tą zmianę. Odpowiedzi stanu i wyjścia pokazują niestabilność Odpowiedź stanu Odpowiedź wyjścia

Sprawdźmy sterowalność i osiągalność systemu Mamy n=2, p=1 oraz Zatem System jest niesterowalny - nieosiągalny

Przykład 3. Rozważmy system SISO Zbadajmy jego sterowalność i obserwowalność Mamy n=2, p=1

Zatem System jest sterowalny System jest obserwowalny

poza tym Do samodzielnego rozwiązania: zbadać stabilność stanu i wyjścia wyznaczyć odpowiedź systemu dla zerowego warunku początkowego i wymuszenia poza tym Przedyskutować wyniki

Systemy dyskretne Obserwowalność stanu Stan obserwowalny Stan systemu liniowego jest obserwowalny jeżeli można go określić znając wyjście dla chwil ze skończonego przedziału, Jeżeli każdy stan jest obserwowalny, mówimy, że system jest całkowicie obserwowalny lub krócej obserwowalny

Obserwowalność systemu dyskretnego liniowego stacjonarnego System liniowy stacjonarny jest obserwowalny wtedy i tylko wtedy, gdy macierz obserwowalności, nazywana macierzą obserwowalności Kalmana ma rząd n, tzn. rząd systemu