Sterowalność i obserwowalność

Slides:



Advertisements
Podobne prezentacje
Sterowanie – metody alokacji biegunów II
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Badania operacyjne. Wykład 2
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Systemy dynamiczne – przykłady modeli fenomenologicznych
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Matematyka.
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Sterowalność i obserwowalność
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Teoria sterowania 2012/2013Obserwowalno ść - odtwarzalno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
AUTOMATYKA i ROBOTYKA (wykład 5)
Sterowanie – użycie obserwatorów pełnych
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Miary efektywności/miary dobroci/kryteria jakości działania SSN
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Wykład 22 Modele dyskretne obiektów.
Modele dyskretne obiektów liniowych
Teoria sterowania Wykład 9 Transmitancja operatorowa i stabilność liniowych układu regulacji automatycznej.
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Sterowanie – użycie obserwatorów pełnych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Modele dyskretne – dyskretna aproksymacja modeli ciągłych lub
Teoria sterowania SN 2014/2015Sterowalność, obserwowalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność -
Sterowanie ze sprzężeniem od stanu – metoda alokacji biegunów
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Sterowalność - osiągalność  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność i obserwowalność.
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Systemy liniowe stacjonarne – modele różniczkowe i różnicowe
Podstawy automatyki I Wykład /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Teoria sterowania Materiał wykładowy /2017
Sterowanie procesami ciągłymi
Zapis prezentacji:

Sterowalność i obserwowalność Obok stabilności – dwa podstawowe pojęcia teorii i inżynierii sterowania Przykład 1 Mamy system Liniowy, stacjonarny, 1 – wejście, 1 - wyjście

Transmitancja Zera i bieguny transmitancji Transmitancja po redukcji

Schemat blokowy modelu przestrzeni stanu

Schemat blokowy modelu w nowej przestrzeni stanu Transformacja do postaci diagonalnej Schemat blokowy modelu w nowej przestrzeni stanu

Cztery różne statusy zmiennych stanu: - v1  można na niego wpływać sterowaniem u i można go obserwować z wyjścia y - v2  nie można na niego wpływać sterowaniem u, ale można go obserwować z wyjścia y - v3  można na niego wpływać sterowaniem u, ale nie można go obserwować z wyjścia y - v4  nie można na niego wpływać sterowaniem u, ani nie można go obserwować z wyjścia y

Można wyróżnić cztery podsystemy: - związany ze zmienną stanu v1  sterowalny i obserwowalny - związany ze zmienną stanu v2  niesterowalny, ale obserwowalny - związany ze zmienną stanu v3  sterowalny, ale nieobserwowalny - związany ze zmienną stanu v4  niesterowalny i nieobserwowalny Stany niesterowalne i nieobserwowalne mogą być alb stabilne, albo niestabilne System, którego wszystkie stany niesterowalne są stabilne jest nazywany stabilizowalnym System, którego wszystkie stany nieobserwowalne są stabilne jest nazywany wykrywalnym

Sterowalność Sterowalność określa możliwości wpływania na stan (lub wyjście) systemu odpowiednim ukształtowaniem wejścia Ogólnie wyróżnia się dwa określenia sterowalności: 1. Sterowalność do początku (controllability-to-the-origin), nazywana krócej sterowalnością (controllability) 2. Sterowalność od początku (controllability-from-the-origin), nazywana krócej osiągalnością (reachability) Ograniczymy się do zapoznania się z podstawowymi wynikami znanymi dla systemów liniowych, a w szczególności stacjonarnych

Dla systemów liniowych stacjonarnych mówimy: Stan x0 nazywamy sterowalnym, jeżeli istnieje wejście, które przeprowadza stan systemu x(t) z stanu x0 do stanu zerowego w pewnym skończonym czasie T Stan zerowy osiągany ze stanu x0 przy zastosowaniu różnych wejść u1(t) i u2(t), w różnych skończonych czasach T1 i T2 oraz po różnych trajektoriach

Dla systemów liniowych stacjonarnych mówimy: Stan x1 nazywamy osiągalnym, jeżeli istnieje wejście, które przeprowadza stan systemu x(t) z stanu zerowego do stanu x1 w pewnym skończonym czasie T Stan x1 osiągany ze stanu zerowego przy zastosowaniu różnych wejść u1(t) i u2(t), w różnych skończonych czasach T1 i T2 oraz po różnych trajektoriach

Systemy ciągłe Sterowalność stanu Stan sterowalny Stan systemu liniowego jest sterowalny, jeżeli można system przeprowadzić z tego stanu do stanu za pomocą odpowiedniego sterowania w skończonym czasie Jeżeli każdy stan jest sterowalny, mówimy, że system jest całkowicie sterowalny lub krócej sterowalny

Sterowalność systemu System sterowalny System liniowy jest sterowalny w skończonym przedziale czasu , jeżeli istnieje wejście , które przeprowadzi system z dowolnego stanu do stanu zerowego Jeżeli istnieje chociaż jeden stan systemu na który nie można oddziaływać przez jakiekolwiek wejście systemu, wówczas system jest niesterowalny

Sterowalność systemu ciągłego liniowego stacjonarnego System liniowy stacjonarny (twierdzenie SSC LS1) jest sterowalny wtedy i tylko wtedy, gdy macierz sterowalności, nazywana macierzą sterowalności Kalmana ma rząd n, tzn. rząd systemu Wymiar macierzy sterowalności: nxnp; n – wymiar stanu, p – wymiar wejścia Dla p=1 macierz sterowalności jest macierzą kwadratową i dla sprawdzenia sterowalności wystarczy sprawdzić nieosobliwość macierzy sterowalności

Przykład 2. Dany jest system dynamiczny Zbadać sterowalność systemu Konstruujemy macierz sterowalności

Stąd Dla sprawdzenia sterowalności policzymy wyznacznik zatem System jest niesterowalny (względem stanów)

Lewa górna podmacierz macierzy sterowalności ma wyznacznik różny od zera, zatem Przykład 3. Dany jest system dynamiczny Zbadać sterowalność systemu

Transmitancja systemu Konstruujemy macierz sterowalności stąd

Macierz sterowalności jest niezależna od współczynników licznika transmitancji systemu Wyznacznik macierzy sterowalności Wyznacznik macierzy sterowalności nie zależy współczynników wielomianu charakterystycznego a0, a1 oraz a2, zatem system o takiej strukturze jest zawsze sterowalny względem stanu

Przykład 4 - powrót Konstruujemy macierz sterowalności Dwa stany sterowalne, dwa niesterowalne

Przykład 5 Dany jest system dynamiczny Zbadać sterowalność systemu Macierz sterowalności System sterowalny

Przykład 6 Dany jest system dynamiczny Zbadać sterowalność systemu Macierz sterowalności System sterowalny

Zwykle i-ty wektor własny odpowiadający i-tej wartości własnej macierzy A jest definiowany Ze względu na porządek mnożenia, tak określony wektor własny vi jest nazywany prawostronnym wektorem własnym Podobnie można zdefiniować lewostronny wektor własny wi Dokonując transpozycji Widać: lewostronne wektory własne A są prawostronnymi wektorami własnymi AT

Twierdzenie SSC LS2 System liniowy stacjonarny jest sterowalny wtedy i tylko wtedy, gdy nie istnieje żadem lewostronny wektor własny macierz A, taki że co oznacza, że żaden wektor własny macierz A nie jest ortogonalny do wszystkich kolumn macierz B

Twierdzenie SSC LS3 System liniowy stacjonarny jest sterowalny wtedy i tylko wtedy, gdy macierz o wymiarze nx(n+m) ma rząd n dla dowolnego zespolonego skalara s Test sterowalności w oparciu o twierdzenia 2 i 3 nosi nazwę testu Popov’a – Belevitch’a-Hautus’a

Przykład 7 - powrót Test sterowalności Popov’a – Belevitch’a-Hautus’a Lewostronne wektory własne dla

Patrząc na nietrudno spostrzec, że System jest niesterowalny

Twierdzenie SSC LS4 Diagonalny system liniowy stacjonarny z jednokrotnymi wartościami własnymi jest sterowalny wtedy i tylko wtedy, gdy macierz B nie ma wierszy zerowych

Przykład 6. Układ elektryczny; wejście – napięcie u, wyjście - prąd y Budowa modelu Równania bilansowe Zależność wiążąca Różniczkując zależność wiążącą i podstawiając do drugiego równania bilansowego

Wybierając zmienne stanu Równania stanu Równanie wyjścia System z natury ma diagonalną strukturę – możemy zastosować Twierdzenie 4 jeżeli wartości własne są jednokrotne

Wartości własne Ponieważ obydwa wiersze macierzy B są zawsze niezerowe – system jest sterowalny, jeżeli tylko wartości własne są jednokrotne Macierz testu Kalmana

Wyznacznik macierzy Kalmana Jeżeli wartości parametrów elementów układu Równania stanu Równanie wyjścia Wartość własna dwukrotna

Wyznacznik macierzy Kalmana Schemat blokowy układu Równania stanu są niezależne Odpowiedzi stanu gdzie, , x10 i x20 – warunki początkowe

Do stanu końcowego Można doprowadzić system tylko ze stanów początkowych a nie ze wszystkich

Sterowalność a przekształcenia podobieństwa Sterowalność zostaje zachowana podczas transformacji podobieństwa

Dla systemów ciągłych sterowalność i osiągalność są równoważne Możemy tą równoważność wypowiedzieć w następujący sposób: Jeżeli system ciągły posiada cechę sterowalności stwierdzoną w oparciu o podane wyżej twierdzenie, to oznacza to, że będziemy mogli znaleźć trajektorię wejścia, która będzie przemieszczać system z dowolnego stanu początkowego do dowolnego stanu końcowego System ciągły sterowalny  system ciągły osiągalny

Systemy dyskretne Przykład 4. Rozważmy system dyskretny Równania dla poszczególnych stanów maja postać: W świetle podanej definicji system jest sterowalny, bo: Weźmy dowolny stan Wybierając sterowanie

Przeprowadzimy system do stanu dla Zatem system jest sterowalny, w świetle podanej definicji Drugi stan jest równy zero dla wszystkich niezależnie od przyłożonego wejścia i nie można go przeprowadzić gdziekolwiek indziej System nie posiada zatem cechy osiągalności Wniosek z przykładu: Można wskazać systemy dyskretne posiadające cechę sterowalności, ale nie posiadające cechy osiągalności Uzasadnione jest zatem w odniesieniu do systemów dyskretnych stwierdzać posiadanie cechy osiągalności

System dyskretny sterowalny  system dyskretny osiągalny W ogólności zatem System dyskretny sterowalny  system dyskretny osiągalny Implikacja ta zachodzi jednak tylko dla przypadków, gdy AD jest osobliwa, w przeciwnym przypadku podobnie jak dla systemów ciągłych System dyskretny sterowalny  system dyskretny osiągalny

Osiągalność stanu Stan osiągalny Stan systemu liniowego jest osiągalny, jeżeli można system przeprowadzić do tego stanu ze stanu za pomocą odpowiedniego sterowania w skończonym czasie Jeżeli każdy stan jest osiągalny, mówimy, że system jest całkowicie osiągalny lub krócej osiągalny

Osiągalność systemu dyskretnego liniowego stacjonarnego System liniowy stacjonarny jest osiągalny wtedy i tylko wtedy, gdy macierz osiągalności, nazywana macierzą osiągalności Kalmana ma rząd n, tzn. rząd systemu Wymiar macierzy osiągalności: nxnp; n – wymiar stanu, p – wymiar wejścia Dla m=1 macierz osiągalności jest macierzą kwadratową i dla sprawdzenia osiągalności wystarczy sprawdzić nieosobliwość macierzy osiągalności