Fizyka umysłu. Włodzisław Duch

Slides:



Advertisements
Podobne prezentacje
Włodzisław Duch Katedra Informatyki Stosowanej,
Advertisements

Zjawiska rezonansowe w sygnałach EEG
Sieć jednokierunkowa wielowarstwowa
SZTUCZNE SIECI NEURONOWE
Spektrum autyzmu: zintegrowana teoria
Inteligencja Obliczeniowa Modele neuronowe
Inteligencja Obliczeniowa Sieci dynamiczne cd.
Katedra Informatyki Stosowanej UMK
Uczenie konkurencyjne.
Samoorganizacja: uczenie bez nadzoru.
Inteligencja Obliczeniowa Sieci dynamiczne.
Inteligencja Obliczeniowa Sieci o zmiennej strukturze.
Inteligencja Obliczeniowa Perceptrony
Koncepcje dotyczące neurofizjologicznych podstaw świadomości
Sztuczne sieci neuronowe
Sztuczna Inteligencja Reprezentacja wiedzy II
Procesy poznawcze cd Uwaga.
Wykład XII fizyka współczesna
Wykład III Fale materii Zasada nieoznaczoności Heisenberga
Wykład 15 Neuropsychologia komputerowa
Sztuczna Inteligencja Reprezentacja wiedzy I Wstęp. Włodzisław Duch Katedra Informatyki Stosowanej UMK Google: W. Duch.
Mózg i umysł Mózg jest substratem, umożliwiającym powstanie umysłu.
Zastosowania kognitywistyki
Od neurodynamiki do geometrii umysłu
Zastosowanie pamięci semantycznej we wspomaganiu decyzji medycznych
Symulacje własności pamięci biologicznej.
W kierunku fizyki umysłu.
Jak działa mózg? Uwagi dla modelarzy.
Rozpoznawanie obrazów
mgr inż. Rafał Komański styczeń 2004
Funkcja i jej zaburzenia Maciej Kopera
Procesy poznawcze cd Uczenie się.
Projektowanie architektur systemów filtracji i akwizycji danych z wykorzystaniem modelowania w domenie zdarzeń dyskretnych Krzysztof Korcyl.
Systemy kognitywne jako nowy wymiar informatyki ekonomicznej
Wspomaganie decyzji nie zwalnia od decyzji...
Uczenie w Sieciach Rekurencyjnych
GŁOSOWA ŁĄCZNOŚĆ Z KOMPUTEREM
Ćwiczenia technik efektywnego uczenia się Spotkanie 5
Universalne Modele Uczenia - Cwiczenia
Homogenizacja Kulawik Krzysztof.
Spostrzeganie.
Model I/O bazujący na HSWN Problem uczenia sieci HSWN
Analiza wizualna – co to jest i czym to się je
Analiza wizualna – co to jest i czym to się je Krzysztof S. Nowiński
Biologiczne podłoże przetwarzania informacji.
Uczenie się, pamięć , wyższe czynności nerwowe
Budowa i funkcje mózgu Złudzenia optyczne
Relacje psychofizyczne, mind – body problem
Trening metodą Warnkego
mgr Aniela Kobusińska – Luty pedagog, doradca zawodowy
Seminarium licencjackie Beata Kapuścińska
Neuroplastyczność Zdolność mózgu do reagowania trwałymi zmianami funkcjonalnymi i strukturalnymi na wymagania otoczenia lub na uszkodzenie układu nerwowego;
Opracowała: Małgorzata Pawluk
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Wybrane zagadnienia inteligencji obliczeniowej Zakład Układów i Systemów Nieliniowych I-12 oraz Katedra Mikroelektroniki i Technik Informatycznych proponują.
Od neuronow do populacji
SZTUCZNA INTELIGENCJA
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
Sieci dynamiczne Sieci Neuronowe Wykład 16 Włodzisław Duch Uniwersytet Mikołaja Kopernika Google: W. Duch.
Belief Nets Autor: inż. 2013r źródło tła:
Sztuczne Sieci Neuronowe Modele neuronowe
Jak można wykorzystać swoją wiedzę z Matlaba
RODZAJE DRÓG a RODZAJE EMOCJI
Problem umysł-ciało (mind-body problem)
Kognitywne właściwości sieci neuronowych
Sztuczne Sieci Neuronowe Modele neuronowe
Jak działa mózg? Uwagi dla modelarzy.
Włodzisław Duch Katedra Informatyki Stosowanej,
Inteligencja Obliczeniowa Perceptrony
Inteligencja Obliczeniowa Modele neuronowe
Zapis prezentacji:

Fizyka umysłu. Włodzisław Duch Katedra Metod Komputerowych, Uniwersytet Mikołaja Kopernika. WWW: http://www.phys.uni.torun.pl/~duch (c) 1999. Tralvex Yeap. All Rights Reserved

Plan Fizyka, umysły i mózgi. Umysł - na jakim poziomie? Pamięć i neurony. Rezonans stochastyczny. Gdzie ten umysł? Model statyczny. Kategoryzacja. Model dynamiczny. Fizyka umysłu.

Fizyka, umysły i mózgi Wielkie wyzwanie fizyki: stworzenie modelu świata, który da się zrozumieć. Mózg to najbardziej skomplikowany obiekt w znanym Wszechświecie, umysł - najbardziej tajemniczy. Mózg jest zbyt ważny, by zostawić go neurofizjologom. Umysł - część tego, co robi mózg. „Ja” to jeden z wielu procesów realizowanych przez mój mózg. Zrozumieć działanie mózgu i umysłu: na jakim poziomie? czy fizyka wystarczy?

Poziomy opisu Neurofizyka i neuroinformatyka. Institute for Theoretical Neurophysics, Universität Bremen Cognitive computational neurosciences. Kognitywistyka, cognitive science - pismo. Od poziomu submolekularnego do całego mózgu: gdzie szukać umysłu? O zrozumienie umysłu: “... bardzo chcę, by się to nam nigdy nie udało”. (Ł. Turski, recenzja książki R. Penrose'a „Nowy umysł cesarza”, Post. Fiz. 1996) Czy nasza wiedza zmieni się na poziomie: * Podręcznika biologii w szkole? * Podręcznika uniwersyteckiego? * Specjalistycznych książek?

Od molekuł ... Poziom molekularny 0.1-100 nm Gałęzie nauki: genetyka, neurochemia, biologia komórki, fizyka molekularna. Oczekiwania: zrozumienie mechanizmów molekularnych działania kanałów jonowych, synaps, pamięci, uczenia się, powstawania sygnałów sensorycznych, farmakologia kwantowa. Modele fizyczne: brak; struktury półprzewodnikowe nie przypominają membran komórek i kanałów jonowych. Poziom kwantowy lub subkwantowy: Penrose i mikrotubule. Czas procesów poznawczych i neuronowych: 1-100 ms; czas dekoherencji procesów kwantowych w mikrotubulach 10-13 s (Tegmark, Science 2000). Świadomość i kolaps funkcji falowej w wyniku pomiaru (Wigner, Stapp): 40 lat bezpłodnych rozważań.

... przez neurony ... Poziom neuronów 0.1-100 mm Gałęzie nauki: neurobiologia, biofizyka, biochemia ... Oczekiwania: rozwój i śmierć neuronów, powstawanie potencjałów czynnościowych, przyczyny degeneracji, kompensacja, rodzaje neuronów, komunikacja ... Modele fizyczne: bardzo niedoskonałe, ale szczegółowe symulacje komputerowe umożliwiają badania in silico. Psychofizyka: do XX wieku ważna dziedzina, pracowali w niej Izaac Newton, Thomas Young, Herman von Helmholtz, Erwin Schrödinger (kolor); Ernst Mach (słuch, teoria pomiaru). Zamiana bodźców fizycznych na pobudzenia neuronów: wszystkie wrażenia i stany umysłowe są ciągami impulsów! F. Crick, Zdumiewająca hipoteza (1994; W-wa 1997).

... grupy neuronów ... Kolumny kory 105 neuronów, 1 mm2, 80% połączeń wewnątrz. Gałęzie nauki: neurofizjologia, biofizyka, teoria układów złożonych ... Oczekiwania: komunikacja miedzy neuronami, stany dynamiczne, analiza sygnałów, skojarzenia ... Modele fizyczne: bardzo niedoskonałe, uproszczone neurochipy pozwalają na pewne eksperymenty in silico. Pojedyncze neurony nie mają znaczenia: kolumny lub większe struktury muszą działać synchronicznie by wpłynąć na działanie/umysł. Opis teoretyczny: układ dynamiczny, synapsa = stopień swobody, rzędu 109- 1010 synaps w kolumnie. Powstają atraktory wszelkiego rodzaju. Co zmienia się w wyniku uczenia?

Reguła Hebba - uczenie D. O. Hebb, 1949 „Kiedy akson komórki A jest dostatecznie blisko by pobudzić komórkę B i wielokrotnie w sposób trwały bierze udział w jej pobudzaniu, procesy wzrostu lub zmian metabolicznych zachodzą w obu komórkach tak, że sprawność neuronu A jako jednej z komórek pobudzających B, wzrasta.” D. O. Hebb, 1949 Na poziomie molekularnym: LTP - Long Term Potentiation LTD - Long Term Depression E. Kandel, Nobel 2000, za poznanie mechanizmów uczenia synaptycznego u ślimaków morskich.

Schemat kolumny Sieć kolumn (ok. 1 mm2), każda 105 neuronów = 103 mikrokolumn. Połączenia: populacje pobudzające i hamujące (bez adaptacji) wewnątrz modułu, pobudzenia dochodzące z zewnątrz (przez komórki piramidowe). Ok. 80% impulsów z lokalnych obwodów pobudzających, 20% hamujących. Model kolumny: 10.000 synaps E i 2.000 synaps I na neuron.

Pamięć i atraktory Za pamięć biologiczną odpowiedzialne są sieci atraktorowe. Najprostsze modele (sieci Hopfielda) - zbyt proste, tylko atraktory punktowe. DMS, Delayed Match to Sample - małpa musi nauczyć się sekwencji wielu obrazów; w fazie testu po krótkiej prezentacji kilku obrazów i przerwie rzędu 30 s małpa ma pokazać właściwą sekwencję obrazów. Wysoka aktywność (20 Hz) neuronów w obszarze IT i PF utrzymuje się do 30 s po prezentacji, widoczna w pomiarach potencjałów z wielu elektrod. Korelacje czasowe przechodzą w korelacje aktywności neuronów biorących udział w kodowaniu śladów pamięci. Uczenie - pojawianie się nowych atraktorów.

Działanie sieci Sprawności synaptyczne: tylko LTP i LTD (ok. 5x słabsze). Depolaryzacja membrany V(t) o t10ms opisana jest równaniem: Wyniki symulacji programem SpikeNet, 2000-400.000 neuronów. Uczenie: początkowo moduł biorący udział w rozpoznawaniu zwiększa w nieselektywny sposób częstość impulsacji dla wszystkich sygnałów. Powyżej krytycznej wartości wzmocnienia LTP pojawiają się lokalne atraktory na tle globalnej aktywności - struktura sygnału uczącego. Etap 1: komórki mikrokolumn reagują na nauczone bodźce. Etap 2: aktywność spoczynkowa rośnie do około 20 Hz, utrzymuje się po zniknięciu bodźca - aktywna reprezentacja bodźca w pamięci. Pobudzenia wewnętrzne silniejsze niż zewnętrzne, utrzymują spontaniczną aktywność, modelowane przez rozkład Poissona. Etap 3: powstają korelacje pomiędzy mikrokolumnami.

Mózg - pamięć epizodyczna Układ neuromodulacji reguluje plastyczność hipokampa i kory. Pamięć średnioterminowa zapisana jest w sieciach hipokampa, jako wskaźniki do kolumn kory (?) Pamięć trwała jest rezultatem stanów atraktorowych minikolumn kory mózgu, zapisana jest w synapsach w sposób rozproszony. Pamięć epizodyczna - odtworzenie stanu mózgu w momencie epizodu.

Rezonans stochastyczny Synchronizacja impulsów nie jest idealna - czy wariancja to szum czy ukryty sygnał? W układach sensorycznych (dotyk 1996; wzrok 1997) czułość wzrasta. Usher, Feingold (Biological Cybernetics 83, L11-L16, 2000) badali czas odpowiedzi na pytania z tabliczki mnożenia. Szum: sekwencja tonów o przypadkowej częstości, poziom 50-90 dB. Wyniki tłumaczy prosty model oparty na modelach neuronów całkujących zaszumione pobudzenia z upływnością (noisy leaky integrator).

Sukcesy Co można wyjaśnić za pomocą modeli neuronowych? Własności pamięci: adresowalność kontekstowa, zdolność do rozpoznawania uszkodzonych wzorców; czas nie zależy od liczby zapamiętanych wzorców; odporność na zniszczenie neuronów - brak lokalizacji. Pomyłki i skojarzenia fonologiczno - semantyczne. Przepełnienie pamięci prowadzi do chaotycznego zachowania. Różne rodzaje amnezji: wsteczną, następczą, całkowitą, trudności z uczeniem się. Zła praca hipokampa => przypominanie zdarzeń z odległej przeszłości. Halucynacje: fałszywe stany atraktorowe, poskładane z fragmentów. Wiele syndromów neuropsychologicznych: agnozje (zanik zdolności rozpoznawania), afazje (zaburzenia mowy), syndromy kognitywno-afektywne ... Psychiatria komputerowa - od 1995 roku.

Płyn neuronowy Na ile prawdziwa jest metafora mózg-komputer? Czy mózg liczy tak jak komputer czy jak zwijające się białko? Neuronowy płyn (Maass 2001): kolumny działają prosto! Dlaczego kolumna jest tak złożona? Tysiące mikroobwodów, dziesiątki neurotransmiterów/modulatorów, typów neuronów i synaps. Czy jej struktura jest genetycznie zaprogramowana? Jak kodowana jest informacja w sieci neuronów? „Płyn neuronowy”: przypadkowo połączone neurony w kolumnie, nie ma stanów ustalonych, impulsy zaburzają mikroobwody kolumn, nie ma kodowania, wewnętrznych reprezentacji. Wystarczy zdolność do odróżniania zaburzonych stanów! Taki system ma moc maszyny Turinga działającej w czasie rzeczywistym.

Gdzie ten umysł? Centralny Paradoks Kognitywistyki: jak ze zliczania impulsów przez neurony powstaje struktura, symbole, znaczenie, sens, wrażenia, emocje ... czyli świat umysłu? Problemy filozoficzne: problem psychofizyczny, problem jakości wrażeń, świadomości, semantyki i syntaktyki, wiele eksperymentów myślowych ... Problemy techniczne: Jak pogodzić spójność umysłu z rozproszonym przetwarzaniem (binding problem)? Jakie są warunki powstawania wrażeń? Psycho-logos, logika psyche, ma bardzo niewiele praw ogólnych. Brak dobrego modelu łączącego poziom neuro i psyche.

Czego brakuje? Poznanie wszystkich szczegółów na poziomie molekularnym lub pojedynczych neuronów nie wystarczy! Roger Shepard, Toward a universal law of generalization for psychological science (Science, Sept. 1987) “What is required is not more data or more refined data but a different conception of the problem.” Umysł jest częścią tego, co robi mózg. W jaki sposób analizować neurodynamikę tak, by odnieść ją do umysłu? Platon: widzimy cienie prawdziwej rzeczywistości na ścianie jaskini. Metaforycznie: umysł jest cieniem neurodynamiki.

Geometria umysłu R. Shepard (1994): prawa psychologiczne należy formułować w odpowiednich przestrzeniach. Makroskopowe własności są wynikiem oddziaływań na poziomie mikroskopowym. Opis ruchu - niezmienniczy w odpowiednich przestrzeniach Przestrzenie Euklidesowe - transformacja Galileusza. Pseudo-Euklidesowe (3+1) - transformacja Lorentza. Riemanna - transformacje w układzie przyspieszającym. Zachowanie, decyzje - rezultat neurodynamiki. Opis na poziomie neurodynamiki: zbyt trudny. Logika i symbole - zbyt uproszczona; opis geometryczny? Jakie przestrzenie należy użyć by znaleźć ogólne prawa zachowania? Przestrzenie psychologiczne (K. Lewin 1938): obszar, w którym można umieścić elementy naszego doświadczenia, zdarzenia mentalne.

Prawa uniwersalne? „Siły”, „dynamika”: w P-przestrzeniach o minimalnej liczbie wymiarów. Odległości: malejące z wzrastającym podobieństwem obiektów. Uniwersalne prawo generalizacji bodźców zmysłowych: w odpowiedniej przestrzeni zależność jest eksponecjalna. D, odległość, obliczona procedurą MDS z postrzeganego podobieństwa; G(D), prawdopodobieństwo reakcji na wyuczony bodziec (D=0).

Wrażenia wzrokowe Teoria rozpoznawania obiektów, S. Edelman (1997) Wystarczy podobieństwo drugiego rzędu, wystarczy <300 wymiarów. Populacja kolumn kory działająca wspólnie (stacking).

Model statyczny Przestrzeń i czas: arena zdarzeń fizycznych (od czasów Newtona). P-przestrzenie: arena zdarzeń psychicznych, cień neurodynamiki. Cel: integracja informacji behawioralnej i neurodynamiki w jednym modelu, pomost pomiędzy psychologią i neurofizjologią, prostszy niż sieci neuronowe, ale sub-symboliczny, ciągły. Wersja statyczna: reakcje mózgu rzędu 1 sek, behawioralne (sensomotoryczne) lub kognitywne (oparte na pamięci). Zastosowania: rozpoznawanie obiektów, powstawanie kategorii w niskowymiarowych P-przestrzeniach, modele umysłu. Jak? Uprościć neurodynamikę, znaleźć niezmienniki (atraktory), rozkłady gęstości prawdopodobieństwa (PDF), przedstawić je w P-przestrzeniach. Użyć danych behawioralnych do modelowania PDF.

Jak budować model? Od pomiarów aktywności neuronów do oceny siły bodźców. Analiza statystyczna (Bayes’owska) zapisów z wielu elektrod (Földiak). P(ri|s), i=1..N obliczone z zapisów wieloelektrodowych Prawdopodobieństwo posterioryczne P(s|r) = P(stymulacja | reakcja) Prawo Bayes’a: Analiza populacyjna: obiekty reprezentowane jako populacja aktywności kolumn. Reprezentacja słów - widoczna w obrazowaniu mózgu.

Uczenie się kategorii Kategoryzacja w psychologii - wiele teorii. Klasyczne eksperymenty: Shepard et. al (1961), Nosofsky et al. (1994) Problemy o wzrastającym stopniu złożoności, podział na kategorie C1, C2, 3 binarne własności: kolor (czarny/biały), rozmiar (mały/duży), kształt (,). Typ I : jedna własność określa kategorię. Typ II: dwie własności, XOR, np. Kat A: (czarny,duży) lub (biały,mały), kształt dowolny. Typ III-V: jedna własność + coraz więcej wyjątków. Typ VI: brak reguły, wyliczanka Trudności i szybkość uczenia się: Typ I < II < III ~ IV ~ V < VI

Dynamika kanoniczna Co dzieje się w mózgu w czasie uczenia się definicji kategorii na przykładach? Złożona neurodynamika <=> najprostsza dynamika (kanoniczna). Dla wszystkich reguł logicznych można napisać odpowiednia równania. Dla problemów typu II, czyli XOR: Przestrzeń cech

Wbrew większości Lista: choroby C lub R, symptomy PC, PR, I Choroba C kojarzy się z symptomami (PC, I), choroba R z (PR, I); C występuje 3 razy częściej niż R. (PC, I) => C, PC => C, I => C. Przewidywania wbrew większości (Medin, Edelson 1988). Chociaż PC + I + PR => C (60%) to PC + PR => R (60%) Baseny atraktorów neurodynamiki? PDF w przestrzeni {C, R, I, PC, PR}. Interpretacja psychologiczna (Kruschke 1996): PR ma znaczenie ponieważ jest to symptom wyróżniający, chociaż PC jest częstszy. Aktywacja PR + PC częściej prowadzi do odpowiedzi R ponieważ gradient w kierunku R jest większy.

Model dynamiczny Model statyczny - przydatny do interpretacji szybkich reakcji. Lokalne maksima PDF: aktywacje pamięci. Neurodynamika (poziom mikro): 1010- 1014 parametrów (synapsy); atraktory i przejścia pomiędzy nimi. Przestrzenie cech: 10-1000 parametrów (bodźce i zachowania); obiekty (PDF) i przejścia pomiędzy nimi. Mapy umysłu.

Maskowanie Maskowanie: jeśli po ekspozycji pierwszego bodźca następuje szybko drugi, to wrażenia związane z tym pierwszym nie powstają. Stan umysłu: początkowo rozpoznawanie obiektu O1, stan ma pewien pęd i bezwładność (masę efektywną). Bodziec zewnętrzny skierowuje go do O2. Bodziec maskujący O3 bliski O2 blokuje aktywację O2; wrażenia związane z pierwszym bodźcem nie powstają. Torowanie obniża masę efektywną.

Model umysłu Model hierarchiczny: wykrywanie cech - mapy topograficzne, kora sensoryczna rozpoznawanie obiektów - pamięć długotrwała pamięć robocza - bieżąca kontrola, przeżywana teraźniejszość.

Fizyka umysłu Język pozwalający na opis zdarzeń mentalnych redukowalny do zdarzeń neurofizjologicznych. Dynamika „stanu umysłu”, uproszczona dynamika opisująca ruch w przestrzeni cech. Obiekty - potencjały, spowalniające dynamikę. Stan umysłu: pęd, masa efektywna. Uproszczona dynamika powinna odtwarzać prawd. przejść pomiędzy stanami neurodynamiki mózgu, stanami behawioralnymi. Rozmyta dynamika symboliczna? Pierwotne obiekty umysłu: skonstruowane z danych sensorycznych i motorycznych. Wtórne: kategorie abstrakcyjne.

Podsumowanie Model Platoński - redukowalny do neurodynamiki, interpretowalny na poziomie psyche. Poszukiwanie niskowymiarowych reprezentacji zdarzeń mentalnych i uproszczonej dynamiki. Sieć neuronowa realizująca model statyczny znalazła użyteczne zastosowania techniczne. Otwarte pytania: Matematyczny opis p-ni o zmiennej liczbie wymiarów. Geometryczne unaocznienie nawet prostych eksperymentów wymaga wielowymiarowych przestrzeni. Jeśli odległości  prawd. przejść to są niesymetryczne. Przestrzeń Finslera? Wyzwanie: od neurodynamiki => przestrzeni cech dla kategoryzacji u małp. Symulator modelu dynamicznego, redukcja dynamiki. Na ile taki model może być przydatny?

Fizyka umysłu?