Wielościany foremne Prezentację przygotował Krystian Misiurek I”b”

Slides:



Advertisements
Podobne prezentacje
Spis treści Geometria Algebra Koło, okrąg Zbiory liczbowe
Advertisements

Ostrosłupy SAMBOR MARIUSZ O A B C D E F H R S α S H h r R a S b h H a
FIGURY PRZESTRZENNE.
Temat: WIELOŚCIANY KLASA III P r.
GRANIASTOSŁUPY.
Przygotowały: Jagoda Pacocha Dominika Ściernicka
WIELOŚCIANY FOREMNE CZYLI BRYŁY PLATOŃSKIE
Opracowanie Agnieszka Skibińska Bożena Hołownia Maria Pera
sześcian, prostopadłościan, graniastosłup i ostrosłup
Bryły i figury w architekturze miasta Legionowo:
Dane INFORMACYJNE: Nazwa szkoły: Zespół Szkół Morskich ID grupy: 97/80_MF_G1 Opiekun: Krystyna Sułek Kompetencja: Matematyczno-fizyczna Temat projektowy:
Wielościany platońskie i archimedesowe
BRYŁY PLATOŃSKIE.
Bryły geometryczne Konrad Wawrzyńczak kl. IIIa Bryły obrotowe
GrAnIaStOsŁuPy PrOsTe.
Graniastosłupy.
Prezentacja wykonana przez mgr Katarzynę Kostrowską
WYKONAŁY: ANNA DEDA JOANNA KANIA KLASA I „a” ZSZ SPRZEDAWCA
Wielościany foremne Wielościan - bryła geometryczna ograniczona przez tak zwaną powierzchnię wielościenną, czyli utworzoną z wielokątów o rozłącznych wnętrzach,
Wielościany foremne Bryły platońskie.
BRYŁY PLATOŃSKIE – MATEMATYCZNE BOMBKI NA CHOINKĘ
Wielościany.
Graniastosłupy i Ostrosłupy
Bryły platońskie.
Wykonała: mgr Renata Ściga
Definicje matematyczne - geometria
Bryły złożone-cuda architektury
Sieć Krystalograficzna Kryształów
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
w Gimnazjum w Zespole Szkół
Graniastosłupy i ostrosłupy
Pole i objętość graniastosłupów i ostrosłupów- powtórzenie wiadomości
Graniastosłupy.
Graniastosłupy.
Poznajemy graniastosłupy - prezentacja
Figury przestrzenne.
OSTROSŁUPY.
Wielościan foremny (bryła platońska) – wielościan spełniający następujące trzy warunki:
Bryły archimedesowskie i platońskie
Każdy z tych przedmiotów jest modelem figury przestrzennej
FIGURY GEOMETRYCZNE.
Wykonali: Magdalena Pędrak Weronika Stalmach Ireneusz Tabaszewski
Przygotowała Patrycja Strzałka.
Tomasz Dąbrowski Adrian Ropelewski Kl III AE GRANIASTOSŁUPY.
Bryły geometryczne Wielościany Wielościany_foremne Bryły obrotowe
Wielościany Gwiaździste
Opracowała: Iwona Kowalik
Wielokąty foremne.
Szkoła Podstawowa nr 29 w Lublinie, kl. VIa
WIELOŚCIANY FOREMNE Edyta Przedwojewska.
sześcian, prostopadłościan, graniastosłup i ostrosłup
Bryły.
Uwaga !!! Aby móc przemieszczać się między poszczególnymi slajdami naciśnij : Np.: „Następny slajd”, nazwę wybranych brył, np.: Graniastosłupy lub figurę,
Wielościany platońskie i archimedesowe
Opracowały: Alicja Piślewska i Roma Kwiatkiewicz
B R Y Ł Y.
ACH, TEN SZEŚCIAN! Martyna Nytko Remigiusz Makuch Marek Pustelnik
BRYŁY.
Prezentację wykonał Daniel Klimczak kl V b
Platon ( p.n.e.) Był twórcą systemu filozoficznego zwanego idealizmem platońskim. Uważa się, że to od Platona zaczyna się filozofia rozumiana jako.
Rozpoznawanie brył przestrzennych
PODSTAWY STEREOMETRII
Wstęp Tą krótką prezentacją chcemy Wam pokazać jak ważna i przydatna może być matematyka dla każdego z nas w naszym codziennym życiu.
Opis graniastosłupa. Siatka graniastosłupa.
Wykonały: Martyna Gunia & Klaudia Francikiewicz. Wielościan gwiaździsty jest to rodzaj wielościanu zbudowanego z kilku innych wielościanów, o części centralnej.
Graniastosłup jest to wielościan, którego wszystkie wierzchołki są położone na dwóch równoległych płaszczyznach, zwanych podstawami graniastosłupa i.
Wielokąty wpisane w okrąg
BRYŁY PLATOŃSKIE WYKONAŁ MIKOŁAJ MATUSZEWSKI UCZEŃ KLASY 2B
PARKIETAŻE PARKIETAŻE PARKIETAŻE.
Przemysław Socha Marcel Niedźwiecki
Zapis prezentacji:

Wielościany foremne Prezentację przygotował Krystian Misiurek I”b”

Trochę informacji o bryłach platońskich Wielościan foremny (bryła platońska) – jest to wielościan spełniający następujące trzy warunki: * ściany są przystającymi wielokątami foremnymi, * w każdym wierzchołku zbiega się jednakowa liczba ścian, * jest bryłą wypukłą. Wielościany foremne nazywane są także bryłami platońskimi, gdyż Platon jako pierwszy odnotował fakt istnienia ściśle określonej ich liczby. Do jego czasów znano jednak jedynie cztery z nich. Sam Platon pisząc „Timajos” nie wspomina jeszcze o dwunastościanie. W dialogu tym Platon pisał, że każdy żywioł można utożsamić z jedną z doskonałych brył (ogień - czworościan, ziemia - sześcian, powietrze - ośmiościan, woda - dwudziestościan). Po odkryciu dwunastościanu foremnego włączył go do swojego systemu jako symbol całego wszechświata. Niemal 2 tysiące lat później, w XVII wieku Kepler użył wielościanów foremnych do swojego modelu kosmologicznego.

Czworościan foremny Czworościan foremny (gr. tetraedr) - czworościan, którego ściany są identycznymi trójkątami równobocznymi. Jeden z pięciu wielościanów foremnych. Posiada 6 krawędzi i 4 wierzchołki. Czworościan foremny jest przykładem trójwymiarowego sympleksu. Czworościan foremny może być wpisany w sześcian na dwa sposoby tak, aby każdy jego wierzchołek pokrywał się z jakimś wierzchołkiem sześcianu, a każda jego krawędź z przekątną jednej ze ścian sześcianu. Objętość każdego z tych czworościanów wynosi 1/3 objętości sześcianu. Czworościany foremne wraz z ośmiościanami foremnymi wystarczą do wypełnienia całej przestrzeni.

Sześcian foremny Sześcian (gr. heksaedr) to wielościan foremny o sześciu bokach w kształcie identycznych kwadratów. Posiada dwanaście krawędzi i osiem wierzchołków. Ścinając w pewny sposób wierzchołki sześcianu otrzymujemy wielościan półforemny o nazwie sześcian ścięty. Kąt między ścianami sześcianu jest kątem prostym. Sześcian jest także szczególnym przypadkiem graniastosłupa prawidłowego, hipersześcianu, prostopadłościanu i romboedru. Formy sześcienne, wbrew obiegowym opiniom, występują w środowisku naturalnym, tak krystalizuje np.: piryt.

Ośmiościan foremny Ośmiościan foremny (gr. oktaedr) to wielościan foremny o 8 ścianach w kształcie identycznych trójkątów równobocznych. Posiada 12 krawędzi i 6 wierzchołków. Ścinając wierzchołki ośmiościanu otrzymujemy wielościan półforemny o nazwie ośmiościan ścięty. Ośmiościan foremny jest także antygraniastosłupem. Ośmiościan foremny ma cztery pary ścian do siebie równoległych.

Dwunastościan foremny Dwunastościan foremny (gr. dodekaedr) to wielościan foremny o 12 ścianach w kształcie przystających pięciokątów foremnych. Posiada 30 krawędzi i 20 wierzchołków. Ścinając wierzchołki dwunastościanu otrzymujemy wielościan półforemny o nazwie dwunastościan ścięty.

Dwudziestościan foremny Dwudziestościan foremny (gr. ikosaedr) to najbardziej złożony wielościan foremny o 20 ścianach w kształcie przystających trójkątów równobocznych. Posiada 30 krawędzi i 12 wierzchołków oraz 15 płaszczyzn symetrii. Ścinając wierzchołki dwudziestościanu otrzymujemy wielościan półforemny o nazwie dwudziestościan ścięty.