Kiedy półprzewodniki stają się przewodnikami i izolatorami?

Slides:



Advertisements
Podobne prezentacje
Równanie Schrödingera
Advertisements

Równanie Schrödingera
Cele wykładu Celem wykładu jest przedstawienie: konfiguracji połączeń,
Elementy Elektroniczne
ELEMENTY ELEKTRONICZNE
Tranzystor polowy, tranzystor unipolarny, FET
Metale Najczęstsze struktury krystaliczne : heksagonalna,
Atom wieloelektronowy
Luminescencja w materiałach nieorganicznych Wykład monograficzny
Wykład III ELEKTROMAGNETYZM
Fizyka Ciała Stałego Ciała stałe można podzielić na:
kontakt m-s, m-i-s, tranzystory polowe
Złącze P-N.
Zjawisko fotoelektryczne
Prezentację wykonała: mgr inż. Anna Jasik
Mateusz Wieczorkiewicz
Wykonał Artur Kacprzak kl. IVaE
1 Własności elektronowe amorficznych stopów Si/Me:H w pobliżu przejścia izolator-metal Gęste pary metali (wzrost gęstości -> I-M) niemetale poddane wysokiemu.
Podstawy teorii przewodnictwa
DIELEKTRYKI TADEUSZ HILCZER
Luminescencja w materiałach nieorganicznych Wykład monograficzny
Metale Najczęstsze struktury krystaliczne : heksagonalna,
Wykład 10.
Nośniki nadmiarowe w półprzewodnikach cd.
1.Absorpcja światła w półprzewodnikach
Wykład IV Teoria pasmowa ciał stałych.
Złącza półprzewodnikowe
Wykład III.
Wykład II.
Wykład V Półprzewodniki samoistne i domieszkowe.
Wykład Półprzewodniki Pole magnetyczne
Wykład Zależność oporu metali od temperatury.
Dane INFORMACYJNE Nazwa szkoły: Publiczne Gimnazjum im. Książąt Pomorza Zachodniego w Trzebiatowie ID grupy: 98/46_MF_G1 Kompetencja: matematyczno-fizyczna.
Lasery i diody półprzewodnikowe
Materiały Półprzewodnikowe
Materiały Półprzewodnikowe
Elektryczność i Magnetyzm
Diody półprzewodnikowe
Prąd elektryczny Wiadomości ogólne Gęstość prądu Prąd ciepła.
Tranzystory z izolowaną bramką
Półprzewodniki Wykonał: Kamil Gręźlikowski kl. 1H.
FIZYKA Prąd elektryczny
Prąd elektryczny prezentacja do wykładu 4.
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
ELEKTROSTATYKA I PRĄD ELEKTRYCZNY
Oled.
Politechnika Rzeszowska
Politechnika Rzeszowska
Elektrostatyka c.d..
Politechnika Rzeszowska
Przewodniki, półprzewodniki i izolatory prądu elektrycznego
Rezystancja przewodnika
Kwantowa natura promieniowania
ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Monika Jazurek
3. Elementy półprzewodnikowe i układy scalone c.d.
3. Elementy półprzewodnikowe i układy scalone
Komorka elementarna: miedzi oraz krzemu
Kryształy – rodzaje wiązań krystalicznych
Półprzewodniki i urządzenia półprzewodnikowe
Efekt fotoelektryczny
Półprzewodniki r. Aleksandra Gliniany.
Metale i izolatory Teoria pasmowa ciał stałych
Fizyka Prezentacja na temat: „Półprzewodniki i urządzenia półprzewodnikowe” MATEUSZ DOBRY Kraków, 2015/2016.
TECHNOLOGIE MIKROELEKTRONICZNE Dr inż. Krzysztof Waczyński, Instytut Elektroniki, Politechnika Śląska, Akademicka 16, Gliwice (
Ewa Popko 1.  1. Właściwości ciał stałych  2. Symetria kryształu  3. Wiązania w ciele stałym  4.Przybliżenie elektronów swobodnych. Metale  5. Model.
Pozostałe rodzaje wiązań
Materiał edukacyjny wytworzony w ramach projektu „Scholaris - portal wiedzy dla nauczycieli” współfinansowanego przez Unię Europejską w ramach Europejskiego.
Wiązania w sieci przestrzennej kryształów
DOMIESZKOWANIE DYFUZJA
2. ZJAWISKA KONTAKTOWE Energia elektronów w metalu
Zapis prezentacji:

Kiedy półprzewodniki stają się przewodnikami i izolatorami?

Skąd się bierze prąd? + - - +

Metal, przewodnik i półprzewodnik (prawo Ohma) długość Rezystywność (rodzaj materiału) pole przekroju „duża” – izolator „średnia” – półprzewodnik „mała” - metal REZYSTYWNOŚĆ

„Typowe” półprzewodniki

Izolowany atom Krzem n = 2 8 elektronów n = 1 2 elektrony 6 dozwolonych stanów o tej samej energii 2 dozwolone stany o tej samej energii Jednocząstkowe poziomy energetyczne dla atomu sodu i ich zapełnienie przez 11 elektronów.

N atomów - po połączeniu w kryształ PASMOWA TEORIA CIAŁA STAŁEGO, teoria tłumacząca właściwości elektronowe ciał stałych; opiera się na założeniu, że podczas powstawania struktury krystalicznej ciała stałego dozwolone dla elektronów poziomy energetyczne swobodnych atomów rozszczepiają się tworząc pasma poziomów blisko leżących; Każdy z N atomów „wnosi w posagu” swoje poziomy Powstają pasma składające się z dużej (ogromnej!) liczby bardzo blisko siebie leżących poziomów. Poziomy praktycznie tworzą ciągłe pasmo.

Teoria pasmowa - proste podejście Poszczególne pasma są od siebie oddzielone pasmem wzbronionym (przerwą energetyczną); najwyższe, całkowicie lub częściowo wypełnione elektronami pasmo jest nazywane pasmem walencyjnym, a kolejne wyższe, całkowicie lub prawie całkowicie puste - pasmem przewodnictwa. W niecałkowicie zapełnionym pasmie pole elektryczne może spowodować przeniesienie elektronu na sąsiedni poziom energetyczny, tj. wywołać przepływ prądu, w całkowicie zapełnionym pasmie nie może ono zmieniać ani położenia, ani pędu elektronu, a więc nie wywołuje przepływu prądu. E - energia, poszczególne energie odpowiadają: Ec - dnu pasma przewodnictwa Ev - wierzchowi pasma walencyjnego Eg - szerokości przerwy energetycznej - powinowactwo elektronowe q - ładunek elementarny poziom próżni = energia potrzebna do „ucieczki” elektronu z kryształu

Podział materiałów ze względu na ich strukturę pasmową metal (a, b) z niepełnym pasmem walencyjnym - dobrze przewodzi prąd półprzewodnik (c) z wąską przerwą energetyczną - przewodzi prąd izolator (d) - szeroka przerwa, walencyjne pasmo zapełnione, pasmo przewodnictwa puste

Elektrony i dziury Zamiast rozważać dużą liczbę elektronów w niecałkowicie wypełnionym pasmie walencyjnym (cząstek o ujemnym ładunku i ujemnej masie efektywnej), rozważamy małą liczbę dziur (cząstek o dodatnim ładunku i dodatniej masie efektywnej).

Co się dzieje, gdy wprowadzimy domieszkę? (na przykładzie krzemu) Wprowadzenie elektronu (fosfor) - domieszka donorowa: na dodatkowy elektron NIE MA miejsca w pasmie walencyjnym - gdzie się ma podziać? domieszkowanie takie NIE zwiększa liczby dziur! elektrony mogą się przemieszczać - znajdą się w pasmie przewodnictwa, gdy będą miały energię większą, niż energia wiązania na domieszce (donorze) dziura Wprowadzenie dziury (bor) - domieszka akceptorowa: domieszka „kradnie” elektron od sąsiada (Si) domieszkowanie takie NIE zwiększa liczby elektronów! dziury mogą się przemieszczać - o ile założymy, że mają energię wystarczającą do przekroczenia energii wiązania dziury na akceptorze

Kandydaci na domieszki

(dla temperatury pokojowej energia kT wynosi w przybliżeniu 25meV) Energie wiązania (czyli jak „mocno” trzeba „kopnąć domieszkę”, aby pojawiły się dodatkowe nośniki prądu) (dla temperatury pokojowej energia kT wynosi w przybliżeniu 25meV)

Pasma wyglądają teraz tak: Edom W pasmie wzbronionym powstają dodatkowe poziomy związane z domieszkami o energii pomniejszonej o o wspomnianą energię wiązania (EB ; B od angielskiego binding) w temperaturze 0K dla domieszek donorowych i akceptorowych wyglada to tak: dla dziur wygodniej liczyć względem wierzchu pasma walencyjnego

Dla donorów

Dla akceptorów

Gdy wszystkie domieszki są „zjonizowane” koncentracja elektronów w pasmie przewodnictwa w zależności od temperatury w pewnych (wyższych) temperaturach półprzewodnik zaczyna zachowywać się jakby był samoistny (bo wszystkie domieszki są opróżnione/zapełnione) - „zjonizowane” to slang!

Poziom (energia) Fermiego UWAGA! To tylko podstawy! Ec półprzewodnik samoistny: w środku pasma wzbronionego EF Ev Ec Ec EF ED typ p: pomiędzy poziomami akceptorowymi i wierzchem pasma walencyjnego typ n: pomiędzy poziomami donorowymi i dnem pasma przewodnictwa EA EF Ev Ev

Dioda półprzewodnikowa (złącze p-n)

Praktyczne wykorzystanie - prosty opis (statyczny) złącza p-n „W momencie połączenia” Przed „połączeniem” Po „połączeniu” - ustala się równowaga, wyrównuja się poziomy Fermiego, powstaje bariera potencjału, płyną prądy dyfuzyjny i unoszenia.

Praktyczne wykorzystanie - prosty opis (statyczny) złącza p-n polaryzacja w kierunku zaporowym polaryzacja w kierunku przewodzenia Va - przyłożone napięcie

Diody w praktyce

UWAGA! Pasma dotyczą kryształów, ale ... Intensywny rozwój elektroniki i optoelektroniki opartej o meteriały organiczne oraz integracja tej technologii z „tradycyjną” spowodowały pewien „bałagan” - chemicy i fizycy używają różnych określeń - często niepoprawnych. W polimerach i warstwach z nich stworzonych raczej NIE można mówić o pasmach (choć niektóre warstwy maja właściwości, które można za pomocą teorii pasmowej opisać). „Odpowiednikami” pasm są LUMO (lowest unoccupied molecular orbital - czyli najniższy nieobsadzony orbital molekularny) oraz HOMO (highest occupied molecular orbital - czyli najwyższy obsadzony orbital molekularny). LUMO jest „odpowiednikiem” pasma przewodnictwa, zaś HOMO - walencyjnego.

Nie załamuj się! Ty też możesz dostać Nobla! „Wszystko, co było do wynalezienia, zostało już wynalezione.” Charles H. Duell, Biuro Patentów USA, 1899. komórki wykonane przez NASZYCH studentów