Analiza wariancji Analiza wariancji (ANOVA) stanowi rozszerzenie testu t-Studenta w przypadku porównywanie większej liczby grup. Podział na grupy (czyli.

Slides:



Advertisements
Podobne prezentacje
Regresja i korelacja materiały dydaktyczne.
Advertisements

Excel Narzędzia do analizy regresji
Rangowy test zgodności rozkładów
One flew over... statistics czyli statystyka w 8 godzin
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Estymacja. Przedziały ufności.
Układy eksperymentalne analizy wariancji. Analiza wariancji Planowanie eksperymentu Analiza jednoczynnikowa, p poziomów czynnika, dla każdego obiektu.
Wykład 9 Analiza wariancji (ANOVA)
Analiza wariancji jednoczynnikowa
Analiza wariancji Marcin Zajenkowski. Badania eksperymentalne ANOVA najczęściej do eksperymentów Porównanie wyników z 2 grup lub więcej Zmienna niezależna.
Nowy kod Statistica 6.1 HEN6EUEKH8.
Wykład 7 Przedział ufności dla 1 – 2
Wykład 6 Standardowy błąd średniej a odchylenie standardowe z próby
Wykład 4 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 8 Testy Studenta Jest kilka różnych testów Studenta. Mają one podobną strukturę ale służą do testowania różnych hipotez i różnią się nieco postacią.
Wykład 3 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 11 Analiza wariancji (ANOVA)
Prognozowanie na podstawie szeregów czasowych
Test t-studenta dla pojedynczej próby
Porównywanie średnich dwóch prób zależnych
Test t-studenta dla pojedynczej próby
Analiza wariancji ANOVA efekty główne
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
Wykład 4. Rozkłady teoretyczne
Analiza wariancji.
INTERAKCJE MIĘDZY ZMIENNYMI
Jednoczynnikowa analiza wariancji (ANOVA)
Rozkład t.
Hipotezy statystyczne
Wieloczynnikowa analiza wariancji
Metoda analizy wariancji.
Analiza wariancji jednoczynnikowa
Analiza wariancji.
Testy nieparametryczne
Testowanie hipotez statystycznych
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Analiza wariancji jednoczynnikowa.
Testy nieparametryczne
Irena Woroniecka EKONOMIA MENEDŻERSKA - dodatek do W2
Elementy Rachunku Prawdopodobieństwa i Statystyki
Modelowanie ekonometryczne
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Kilka wybranych uzupelnień
Analiza wariancji ANOVA czynnikowa ANOVA
Testy statystycznej istotności
Seminarium licencjackie Beata Kapuścińska
Analiza wariancji ANOVA efekty główne. Analiza wariancji ANOVA ANOVA: ANalysis Of VAriance Nazwa: wywodzi się z faktu, że w celu testowania statystycznej.
Testowanie hipotez statystycznych
ANALIZA ANOVA - KIEDY? Wiele przedsięwzięć badawczych zakłada porównanie pomiędzy średnimi z więcej niż dwóch populacji lub dwóch warunków eksperymentalnych.
Dopasowanie rozkładów
Ekonometryczne modele nieliniowe
Wnioskowanie statystyczne
Weryfikacja hipotez statystycznych
1 D. Ciołek Analiza danych przekrojowo-czasowych – wykład 7 Analiza danych przekrojowo-czasowych Wykład 7: Testowanie integracji dla danych panelowych.
Weryfikacja hipotez statystycznych dr hab. Mieczysław Kowerski
Testowanie hipotez Jacek Szanduła.
Model ekonometryczny Jacek Szanduła.
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
STATYSTYKA – kurs podstawowy wykład 7 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
Statystyka medyczna Piotr Kozłowski www: 1.
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Statystyka matematyczna
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
JEDNOCZYNNIKOWA ANALIZA WARIANCJI
KONTRASTY Zastosowanie statystyki w bioinżynierii ćw 5.
Test t-studenta dla pojedynczej próby
Zapis prezentacji:

Analiza wariancji Analiza wariancji (ANOVA) stanowi rozszerzenie testu t-Studenta w przypadku porównywanie większej liczby grup. Podział na grupy (czyli klasyfikacja) dokonywany jest na podstawie jednego lub kilku czynników. Mówimy więc o jednoczynnikowej (one-way) lub wieloczynnikowej analizie wariancji.

Analiza wariancji Czynnik może przybierać pewną liczbę wartości, zwanych poziomami. Np. czynnik płeć ma tylko dwa poziomy (,), czynnik grupa krwi – cztery poziomy (0,A,B,AB). Należy odróżniać liczbę czynników od liczby poziomów danego czynnika. Jeszcze ważniejsze jest odróżnianie wyniku od czynnika.

Analiza wariancji Założenia Podobnie jak w teście t-Studenta zakłada się, że wyniki podlegają rozkładowi normalnemu, a wariancje we wszystkich grupach są takie same. Procedury analizy wariancji są dość odporne na naruszenie tych założeń.

Jednoczynnikowa analiza wariacji Hipoteza zerowa: wartość oczekiwana w każdej grupie jest taka sama. Hipoteza alternatywna: nie wszystkie wartości oczekiwane są jednakowe.

Jednoczynnikowa analiza wariancji Weryfikacja hipotezy polega na estymacji wariancji na dwa niezależne od siebie sposoby: uśredniając wyniki uzyskane dla każdej grupy badając zmienność średnich między grupami O ile H 0 jest słuszna, obie wariancje powinny być jednakowe. Sprawdzamy to jednostronnym testem F.

Jednoczynnikowa analiza wariancji Wyniki przedstawia się w postaci tabeli analizy wariancji: Źródło zmienności Sumy kwadratów St. swobody Średni kwadrat F Pomiędzy grupami k-1 Wewnątrz grup (błąd) n-k Całkowitan-1

Jednoczynnikowa analiza wariancji Pozytywny wynik testu (odrzucenie hipotezy zerowej) nie daje odpowiedzi na pytanie, które wartości oczekiwane różnią się między sobą. Odpowiedzi takiej udzielają testy po analizie wariancji, zwane porównaniami post-hoc.

Testy po analizie wariancji Porównania post-hoc są w istocie równoczesnym wykonaniem wielu testów. Jeśli pojedynczy test miałby poziom istotności, to poziom istotności wszystkich porównań mógłby być znacznie wyższy.

Testy po analizie wariancji Wybór testu post-hoc zależy od porównań, jakie zamierzamy przeprowadzić. Jeśli porównujemy grupy z kontrolą, możemy użyć testu Dunnetta. Gdy chcemy dokonać porównań typu każdy z każdym przyda się nam test Tukeya (lub Tukeya-Kramera dla niejednakowo licznych grup).

Testy post-hoc Wymienione testy zapewniają poziom istotności dla całego zbioru porównań.