D. Ciołek BADANIA OPERACYJNE – wykład 0

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

ANALIZA SIECIOWA PRZEDSIĘWZIĘĆ konstrukcja harmonogramu
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Metody badania stabilności Lapunowa
Wybrane zastosowania programowania liniowego
BADANIA OPERACYJNE – pojęcia wstępne
Metoda simpleks Simpleks jest uniwersalną metodą rozwiązywania zadań programowania liniowego. Jest to metoda iteracyjnego poprawiania wstępnego rozwiązania.
BADANIA OPERACYJNE opracowanie na podstawie „Metody wspomagające podejmowanie decyzji w zarządzaniu” D. Witkowska, Menadżer Łódź dr inż. Iwona Staniec.
Badania operacyjne. Wykład 1
Badania operacyjne. Wykład 2
Rachunek kosztów planowanych – zagadnienia podstawowe
Zagadnienie transportowe
Ekonometria wykład w roku 2009/2010
Ekonometria wykladowca: dr Michał Karpuk
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Komputerowe Wspomaganie Decyzji 2010/2011 Zagadnienia wielocelowe II Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Metody.
Liniowe modele decyzyjne – rozwiązania i analiza post-optymalizacyjna
Metoda graficzna opracowanie na podstawie „Metody wspomagające podejmowanie decyzji w zarządzaniu” D. Witkowska, Menadżer Łódź Zadania, w których.
Metoda simpleks opracowanie na podstawie „Metody wspomagające podejmowanie decyzji w zarządzaniu” D. Witkowska, Menadżer Łódź Simpleks jest uniwersalną.
dr inż. Iwona Staniec p. 334 Lodex
Metoda graficzna opracowanie na podstawie Metody wspomagające podejmowanie decyzji w zarządzaniu D. Witkowska, Menadżer Łódź Zadania, w których występują
„ Badania operacyjne w ekonomii i zarządzaniu ”
MATEMATYCZNE MODELOWANIE SYSTEMÓW
Winqsb – oczami studenta
Ekonometria. Co wynika z podejścia stochastycznego?
Metody Lapunowa badania stabilności
Paweł Górczyński Badania operacyjne Paweł Górczyński
Optymalizacja liniowa
Programowanie liniowe w teorii gier
Paweł Górczyński Badania operacyjne Paweł Górczyński
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
II Zadanie programowania liniowego PL
ALGORYTMY OPTYMALIZACJI
Zadanie programowania liniowego PL dla ograniczeń mniejszościowych
METODY NUMERYCZNE I OPTYMALIZACJA
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Dana jest sieć dystrybucji wody w postaci: Ø      m- węzłów,
MS Excel - wspomaganie decyzji
Politechniki Poznańskiej
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
II Zadanie programowania liniowego PL
D. Ciołek BADANIA OPERACYJNE – wykład 2
METODY PODEJMOWANIA DECYZJI
D. Ciołek BADANIA OPERACYJNE – wykład 4
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
D. Ciołek EKONOMETRIA – wykład 5
D. Ciołek EKONOMETRIA – wykład 2
D. Ciołek EKONOMETRIA – wykład 4
D. Ciołek EKONOMETRIA – wykład 7
D. Ciołek BADANIA OPERACYJNE – wykład 0
Badania operacyjne i teoria optymalizacji semestr zimowy 2015/2016
D. Ciołek BADANIA OPERACYJNE – wykład 2
Katedra Inżynierii Sterowania Komputerowe systemy sterowania i wspomagania decyzji 2015/2016 © Kazimierz Duzinkiewicz, dr hab. inż. 1 Dekompozycyjne metody.
ANALIZA CVP KOSZT-WOLUMEN-ZYSK.
Treść dzisiejszego wykładu l Metoda kar. l Podsumowanie przekształcania zadań programowania liniowego do postaci tabelarycznej. l Specjalne przypadki –sprzeczność,
Treść dzisiejszego wykładu l Podejmowanie decyzji. l Budowa modeli decyzyjnych. l Graficzna metoda rozwiązywania prostych problem l ów decyzyjnych. l Zapis.
Metody Badań Operacyjnych Michał Suchanek Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Badania operacyjne i ekonometria semestr letni 2015/2016 Maciej Szczepankiewicz Katedra Nauk Ekonomicznych.
Ekonometria WYKŁAD 12 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Treść dzisiejszego wykładu l Postać standardowa zadania PL. l Zmienne dodatkowe w zadaniu PL. l Metoda simpleks –wymagania metody simpleks, –tablica simpleksowa.
Treść dzisiejszego wykładu l Analiza wrażliwości –zmiana wartości współczynników funkcji celu, –zmiana wartości prawych stron ograniczeń. l Podejścia do.
 Zdefiniowanie zmiennych  Programowanie liniowe jest działem programowania matematycznego obejmującym te zagadnienia, w których wszystkie związki mają.
Rozpatrzmy następujące zadanie programowania liniowego:
Struktury i algorytmy wspomagania decyzji
Metody optymalizacji Materiał wykładowy /2017
(x1, x2) – decyzja (zmienne decyzyjne)
Metody optymalizacji – metody badań operacyjnych
EKONOMETRIA W3 prof. UG, dr hab. Tadeusz W. Bołt
Wprowadzenie i problem optymalnego grafiku
D. Ciołek BADANIA OPERACYJNE – wykład 0
Zapis prezentacji:

D. Ciołek BADANIA OPERACYJNE – wykład 0 Wykład 0: Informacje o przedmiocie. dr Dorota Ciołek Katedra Ekonometrii Wydział Zarządzania UG Konsultacje: p. 112 Środa (I tydz.) 12:00-13:00 Piątek 13:00-14:00 http://wzr.pl/dc

D. Ciołek BADANIA OPERACYJNE – wykład 0 Informacje o przedmiocie: Forma zajęć: Wykłady: 15 godzin Ćwiczenia: 15 godzin Forma zaliczenie: Test pisemny – 90 minut, W razie potrzeby możliwa jest jedna poprawka testu w sesji poprawkowej.

D. Ciołek BADANIA OPERACYJNE – wykład 0 Zakres tematyczny Przedmiot badań operacyjnych. Liniowe modele decyzyjne. Zagadnienia transportowe. Zagadnienia przydziału. Elementy teorii gier: gry dwuosobowe o Sumie zero i gry z naturą

D. Ciołek BADANIA OPERACYJNE – wykład 0 Literatura Ignasiak, E. (red.) (2001), Badania operacyjne, PWE, Warszawa. Kozubski, J.J. (2004), Wprowadzenie do badań operacyjnych, Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk. Kukuła, K. (red.) (2007), Badania operacyjne w przykładach i zadaniach, PWN, Warszawa. Sikora W. (red.) (2008), Badania operacyjne, PWE, Warszawa. Straffin P. D., (2004), Teoria gier, Wydawnictwo Naukowe Scholar, Warszawa. Trzaskalik T. (2007), Wprowadzenie do badań operacyjnych z komputerem, PWE, Warszawa. Wagner, H.M. (1980), Badania operacyjne, PWE, Warszawa.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Wykład 1: Wprowadzenie do badań operacyjnych. Liniowe modele decyzyjne. dr Dorota Ciołek Katedra Ekonometrii Wydział Zarządzania UG Konsultacje: p. 112 Środa (I tydz.) 12:00-13:00 Piątek 13:00-14:00 http://wzr.pl/dc

D. Ciołek BADANIA OPERACYJNE – wykład 1 Nauka wykorzystująca modelowanie matematyczne do wspierania procesu podejmowania decyzji, przede wszystkim w zarządzaniu – nauka o zarządzaniu. Wspieranie podejmowania decyzji oparte jest na zasadach racjonalnego działania: zasada największego efektu – przy danych nakładach środków osiągnąć maksymalny efekt, zasada najmniejszych nakładów środków – określony efekt osiągnąć najmniejszymi nakładami środków. Początki badań operacyjnych: okres przed II Wojną Światową Prekursorzy: Leonid Kantorowicz, matematyk i ekonomista, John von Neuman, chemik i matematyk.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Dziedziny pokrewne: Programowanie matematyczne – konstrukcja i analiza właściwości algorytmów rozwiązywania problemów optymalizacyjnych. Teoria podejmowania decyzji – wypracowanie odpowiednich reguł decyzyjnych na podstawie analizy własności konkretnych modeli podejmowania decyzji. Badania operacyjne – budowa modeli różnych sytuacji decyzyjnych. Bliski związek również z: Ekonomią Matematyczną, Ekonometrią.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Zastosowania: - Wojskowość - rozmieszczenie systemów obrony, analiza niezawodności sprzętu wojskowego, poszukiwanie i udzielanie pomocy, symulacja gier wojennych. - Decyzje dotyczące produkcji – wybór optymalnego asortymentu produkcji, sterowanie zapasami, zarządzanie jakością. - Marketing - wybór mediów w kampanii reklamowej, ocena konkurencyjności strategii marketingowych, przydział personelu do sprzedaży, umiejscowienie centrów dystrybucji, prognozowanie sprzedaży. - Analiza (zarządzanie) portfelem papierów wartościowych - Planowanie diety. - Zarządzanie personelem.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Metody badań operacyjnych Programowanie liniowe, Programowanie całkowitoliczbowe, Zagadnienia transportowe, Zagadnienia przydziału, Programowanie nieliniowe, Programowanie wielokryterialne, Programowanie dynamiczne, Programowanie sieciowe, Teoria masowej obsługi, Itd..

D. Ciołek BADANIA OPERACYJNE – wykład 1 Metodologia postępowania Etapy: 1) Sformułowanie problemu decyzyjnego – sporządzenie uproszczonego opisu fragmentu interesującej nas rzeczywistości gospodarczej; 2) Budowa modelu matematycznego sytuacji decyzyjnej; 3) Wybór odpowiedniego algorytmu i znajdowania rozwiązania optymalnego; 4) Analiza wrażliwości rozwiązania optymalnego; 5) Weryfikacja modelu; 6) Wdrożenie rozwiązania w rzeczywistości gospodarczej.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Rodzaje modeli decyzyjnych Ze względu na posiadane informacje: 1) Modele deterministyczne – w warunkach pewności, parametry modelu są znana i stałe – rozwiązanie optymalne modelu, to decyzja optymalna. 2) Modele niedeterministyczne: - stochastyczne – w warunkach ryzyka, niektóre parametry modelu są zmiennymi losowymi o znanym rozkładzie prawdopodobieństwa – wynik decyzji jest łącznym rezultatem działań decydenta i czynników losowych. - podejmowanie decyzji w warunkach niepewności – parametry modelu mogą przyjmować różne wartości w zależności od tego, jaki wystąpi stan otoczenia.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Rodzaje modeli decyzyjnych Ze względu na horyzont czasowy: 1) Modele operacyjne – w krótkim horyzoncie czasowym, duża powtarzalność. 2) Modele strategiczne - wspierają podejmowanie decyzji mających znaczenie w długim okresie. Ze względu liczbę kryteriów optymalizacji: 1) Modele jednokryterialne, 2) Modele wielokryterialne. Ze względu na postać analityczną wykorzystanej w modelu: 1) Modele liniowe, 2) Modele nieliniowe.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Podstawowe pojęcia Sytuacja decyzyjna – sytuacja, w której podejmujemy decyzję, fragment rzeczywistości mającej znaczenie w danym przypadku. Decydent – osoba podejmująca decyzję o wyborze sposobu działania i ponosząca odpowiedzialność za efekty realizacji. Strategia działania – metoda postępowania przynosząca określony efekt. Decyzja dopuszczalna – sposób działania możliwy do podjęcia przy danych ograniczeniach. Decyzja optymalna – decyzja najlepsza z punktu widzenia danego kryterium. Model decyzyjny - matematyczny zapis sytuacji decyzyjnej.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Linowy model decyzyjny – program liniowy Na model decyzyjny składają się: jednoznacznie zdefiniowane zmienne decyzyjne – informują, o czym powinien zdecydować decydent, warunki ograniczające (warunki wewnętrznej zgodności) – odzwierciedlają ograniczoność zasobów lub minimalne wymagania, które należy spełnić, funkcja kryterium (funkcja celu) – definiuje cel, który przyświeca decydentowi – np. maksymalizacja zysku (przychodu) lub minimalizacja kosztów, warunki nieujemności (warunki brzegowe) – ograniczają zbiór dopuszczalnych rozwiązań zmiennych decyzyjnych do liczb nieujemnych.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Liniowy model decyzyjny Zapis ogólny – postać standardowa (dla maksymalizacji)

D. Ciołek BADANIA OPERACYJNE – wykład 1 Liniowy model decyzyjny Zapis ogólny – postać standardowa (dla minimalizacji)

D. Ciołek BADANIA OPERACYJNE – wykład 1 Liniowy model decyzyjny Zapis macierzowy: - wektor współczynników funkcji celu, - wektor zmiennych decyzyjnych, - macierz współczynników z warunków ograniczających, - wektor wyrazów wolnych (zasobów, wymogów).

D. Ciołek BADANIA OPERACYJNE – wykład 1 Postać kanoniczna LMD Postać kanoniczna liniowego modelu decyzyjnego – postać gdzie warunki ograniczające mają postać równań oraz na wszystkie zmienne nałożone są warunki nieujemności. W warunkach ograniczających uwzględniamy tzw. zmienne dodatkowe s, które do funkcji celu wchodzą z zerowymi wagami. Zmienne dodatkowe wprowadzane są do warunków ograniczających będących nierównościami: - mniejsze równe: zmienna s jest dodawana; - większe równe: zmienna s jest odejmowana.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Liniowy model decyzyjny Zapis ogólny – postać kanoniczna (dla maksymalizacji)

Przykład 1: zagadnienie optymalnego asortymentu produkcji Zakład złożony z trzech zakładów produkcyjnych, w których odbywa się krojenie, mieszanie i paczkowanie, produkuje dwa rodzaje herbaty: I i II. Maszyny w każdym wydziale mogą pracować po 8 godzin dziennie. Proces produkcji można w skrócie opisać w następujący sposób: Pierwszy rodzaj herbaty najpierw jest krojony, a potem paczkowany. Wytworzenie każdej tony tej herbaty zajmuje 1/2 godziny krojenia i 1/3 godziny paczkowania. Herbata drugiego rodzaju jest najpierw mieszana, a następnie paczkowana. Na każdą tonę tej herbaty przypada 1 godzina mieszania i 2/3 godziny paczkowania. Herbata pierwsza może być sprzedawana za 800 $ za tonę, natomiast herbata druga za 600 $ za tonę. Jaki poziom produkcji obu wyrobów powinna ustalić firma, jeśli jej celem jest maksymalizacja całkowitego przychodu?

D. Ciołek BADANIA OPERACYJNE – wykład 1 Rozwiązanie liniowego modelu decyzyjnego Rozwiązanie modelu decyzyjnego polega na znalezieniu rozwiązania optymalnego, czyli najlepszego z punktu widzenia określonego kryterium, możliwego do uzyskania w danych okolicznościach (przy danych ograniczeniach). Rozwiązanie dopuszczalne – takie wartości zmiennych decyzyjnych, które możliwe są do uzyskania przy danych ograniczeniach. Zbiór rozwiązań dopuszczalnych – obszar (lub przestrzeń) do którego należą wszystkie punkty (kombinacje zmiennych decyzyjnych), które spełniają wszystkie ograniczenia równocześnie (warunki ograniczające i warunki brzegowe). Zbiór rozwiązań dopuszczalnych jest zbiorem wypukłym.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Rozwiązanie liniowego modelu decyzyjnego Metody rozwiązywania: metoda graficzne – tylko do modeli z dwiema zmiennymi decyzyjnymi, metoda simplex – metoda uniwersalna dla liniowych modeli decyzyjnych. Rozwiązanie metodą graficzną: 1) Szukamy obszaru rozwiązań dopuszczalnych – obszaru w którym spełnione są wszystkie warunki ograniczające. 2) Wykorzystując gradient funkcji kryterium, w wierzchołkach obszaru rozwiązań dopuszczalnych szukamy rozwiązania najlepszego z punktu widzenia funkcji kryterium – rozwiązanie optymalne. Rozwiązanie optymalne reprezentuje taka kombinację zmiennych decyzyjnych x1 i x2, która daje optymalne, najlepsze z punktu danego celu, rozwiązanie.

D. Ciołek BADANIA OPERACYJNE – wykład 1 Liczba rozwiązań optymalnych Liniowy model decyzyjny może mieć: jedno rozwiązanie optymalne – tylko w jednym wierzchołku zbioru rozwiązań dopuszczalnych znajduje się największa (najmniejsza) wartość funkcji celu. nieskończenie wiele rozwiązań – gdy optymalna wartość funkcji celu znajduje się równocześnie w dwóch wierzchołkach zbioru rozwiązań dopuszczalnych. brak rozwiązań optymalnych – gdy zbiór rozwiązań dopuszczalnych jest zbiorem pustym.

D. Ciołek BADANIA OPERACYJNE – wykład 2 Model dualny do liniowego modelu decyzyjnego Każdemu zagadnieniu programowania liniowego odpowiada sformułowane w odpowiedni sposób zagadnienie dualne (dwoiste). Zastosowanie modelu dualnego: Analiza ekonomiczna wyników rozwiązania, W niektórych sytuacjach umożliwia łatwiejsze rozwiązanie modelu prymalnego (MP).

D. Ciołek BADANIA OPERACYJNE – wykład 2 Zasady budowy modelu dualnego 1) Liczba zmiennych decyzyjnych w MD jest równa liczbie warunków ograniczających w MP. 2) Liczba warunków ograniczających w MD jest równa liczbie zamiennych decyzyjnych w MP. 3) Dualna funkcja celu jest przeciwna wobec prymalnej funkcji celu. 4) Wyrazy wolne z MP stają się współczynnikami w funkcji kryterium MD. 5) Współczynniki z funkcji kryterium MP stają się wyrazami wolnymi w MD. 6) Macierz współczynników przy zmiennych w warunkach ograniczających MD jest równa transponowanej macierzy współczynników z warunków ograniczających MP.

D. Ciołek BADANIA OPERACYJNE – wykład 2 Zasady budowy modelu dualnego - cd 7) Znaki w warunkach ograniczających są standardowe dla dualnej funkcji celu (max: ; min: ). 8) Warunki brzegowe: - Jeżeli warunek ograniczający w MP odpowiadający danej zmiennej dualnej jest standardowy, wówczas zmienna dualna ma ograniczenie brzegowe  0. - Jeżeli warunek ograniczający w MP odpowiadający danej zmiennej dualnej jest niestandardowy, wówczas zmienna dualna ma ograniczenie brzegowe  0. - Jeżeli warunek ograniczający w MP odpowiadający danej zmiennej dualnej jest równością, wówczas zmienna dualna nie ma ograniczenia brzegowego.

D. Ciołek BADANIA OPERACYJNE – wykład 2 Dualny model decyzyjny – dla max Model Prymalny Model dualny

D. Ciołek BADANIA OPERACYJNE – wykład 2 Dualny model decyzyjny – dla min Model Prymalny Model dualny

D. Ciołek BADANIA OPERACYJNE – wykład 2 Model dualny w postaci kanonicznej 1) 2)

D. Ciołek BADANIA OPERACYJNE – wykład 2 Twierdzenia o dualności Twierdzenie 1 Jeżeli model prymalny ma rozwiązanie optymalne, to również model dualny ma rozwiązanie optymalne. Optymalna wartość funkcji celu w MP jest równa optymalnej wartości funkcji celu w MD. Twierdzenie 2 Jeżeli w rozwiązaniu optymalnym zmienna prymalna przyjmuje niezerową wartość, to odpowiadająca jej (sprzężona z nią) zmienna dualna w rozwiązaniu optymalnym jest równa zero. Jeżeli w rozwiązaniu optymalnym zmienna prymalna jest równa zero, to odpowiadająca jej (sprzężona z nią) zmienna dualna w rozwiązaniu optymalnym przyjmuje wartość niezerową.

D. Ciołek BADANIA OPERACYJNE – wykład 2 Interpretacja zmiennych dualnych Dualna zmienna decyzyjna: Wartość optymalna dualnej zmiennej decyzyjnej yi określa przyrost optymalnej wartości funkcji celu zagadnienia prymalnego przy wzroście ograniczenia bi o jednostkę. Zgodnie z neoklasyczną teorią ekonomii – określa krańcową produktywność jednostki i-tego środka produkcji. Dualna zmienna dodatkowa: Wartość optymalna dualnej zmiennej dodatkowej gj informuje o tym, o ile musiałaby zmienić się wartość współczynnika z prymalnej funkcji celu przy zmiennej xj , aby ta zmienna w rozwiązaniu optymalnym przyjęła niezerową wartość.