Synaptic integration – cable theory

Slides:



Advertisements
Podobne prezentacje
Wzmacniacz operacyjny
Advertisements

Integracja w neuronie – teoria kablowa
Temat 2: Podstawy programowania Algorytmy – 1 z 2 _________________________________________________________________________________________________________________.
Równowaga chemiczna - odwracalność reakcji chemicznych
1 Dr Galina Cariowa. 2 Legenda Iteracyjne układy kombinacyjne Sumatory binarne Sumatory - substraktory binarne Funkcje i układy arytmetyczne Układy mnożące.
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Tworzenie odwołania zewnętrznego (łącza) do zakresu komórek w innym skoroszycie Możliwości efektywnego stosowania odwołań zewnętrznych Odwołania zewnętrzne.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Metody optymalizacji - Energetyka 2015/2016 Metody programowania liniowego.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
MIESZACZE CZĘSTOTLIWOŚCI. Przeznaczenie – odbiorniki, nadajniki, syntezery częstotliwości Podstawowy parametr mieszacza = konduktancja (nachylenie) przemiany.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
Badania elastooptyczne Politechnika Rzeszowska Katedra Samolotów i Silników Lotniczych Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów Temat ćwiczenia:
Wypadkowa sił.. Bardzo często się zdarza, że na ciało działa kilka sił. Okazuje się, że można działanie tych sił zastąpić jedną, o odpowiedniej wartości.
Podstawy automatyki. Wprowadzenie Automatyka to dział nauki i techniki, który swoją uwagę koncentruje na sterowaniu procesami technologicznymi i różnego.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
ENERGIA to podstawowa wielkość fizyczna, opisująca zdolność danego ciała do wykonania jakiejś pracy, ruchu.fizyczna Energię w równaniach fizycznych zapisuje.
Przygotowały: Laura Andrzejczak oraz Marta Petelenz- Łukasiewicz z klasy 2”D”
Laboratorium Elastooptyka.
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
Metody Analizy Danych Doświadczalnych Wykład 9 ”Estymacja parametryczna”
Analiza spektralna. Laser i jego zastosowanie.
Teoria masowej obsługi Michał Suchanek Katedra Ekonomiki i Funkcjonowania Przedsiębiorstw Transportowych.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Renata Maciaszczyk Kamila Kutarba. Teoria gier a ekonomia: problem duopolu  Dupol- stan w którym dwaj producenci kontrolują łącznie cały rynek jakiegoś.
Obliczanie procentu danej wielkości Radosław Hołówko.
 Przedziałem otwartym ( a;b ) nazywamy zbiór liczb rzeczywistych x spełniających układ nierówności x a, co krócej zapisujemy a
Przykład 1: Określ liczbę pierwiastków równania (m-1)x 2 -2mx+m=0 w zależności od wartości parametru m. Aby określić liczbę pierwiastków równania, postępujemy.
Modulatory częstotliwości
 Austriacki fizyk teoretyk,  jeden z twórców mechaniki kwantowej,  laureat nagrody Nobla ("odkrycie nowych, płodnych aspektów teorii atomów i ich zastosowanie"),
Fizyczne aspekty przesyłania informacji w neuronach Jakub Kwiecień Michał Bogdan Koło Naukowe Fizyków „Migacz” Uniwersytet Wrocławski.
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
W kręgu matematycznych pojęć
Od neuronow do populacji
Model Lopesa da Silvy – opis matematyczny
SYSTEM KWALIFIKACJI, AWANSÓW I SPADKÓW
RUCH KULISTY I RUCH OGÓLNY BRYŁY
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Liczby pierwsze.
Wykład 8 – Ruch masy w układach ożywionych. Dyfuzja. C.D.
ALGORYTMY I STRUKTURY DANYCH
Podstawy automatyki I Wykład /2016
KLASYFIKACJA CZWOROKĄTÓW
Materiały pochodzą z Platformy Edukacyjnej Portalu
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Wykład IV Ruch harmoniczny
Demodulatory AM.
PROGRAM WYKŁADU Analiza obwodów liniowych pobudzanych okresowymi przebiegami niesinusoidalnymi. Szereg Fouriera w postaci trygonometrycznej i wykładniczej.
Wytrzymałość materiałów
Wytrzymałość materiałów
Dwutranzystorowe stopnie wzmacniające
Zmiany w przepisach ustawy z dnia 26 stycznia 1982 r
Szybkość-zdolność do wykonywania ruchów w najkrótszych odcinkach czasu
Implementacja rekurencji w języku Haskell
Wyrównanie sieci swobodnych
Prawa ruchu ośrodków ciągłych c. d.
Mechanika płynów Podstawy dynamiki płynów rzeczywistych
Przekaźnictwo synaptyczne
Prądy w komórkach nerwowych
Ocena rozkładu na podstawie wykresów kwantylowych
Program na dziś Wprowadzenie Logika prezentacji i artykułu
3. Wykres przedstawia współrzędną prędkości
Mikroekonomia Wykład 4.
Zapis prezentacji:

Synaptic integration – cable theory

Isopotential sphere Current injected into a spherical cell will distribute uniformly across the surface of the sphere. The current flowing across a unit area of the membrane: For a finite step of current: For a sphere, a relationship between Im and I0 is: where The input resistance: - time constant After the current step: The input resistance of a sphere: For long impulse Im (t -> inf) - stan ustalony

Nonisopotential cell (cylinder) Assumptions: 1.Uniform membrane. Membrane parameters are constant and they are not dependent on the membrane potential. 2.The current flows along dimension x, radial current is zero. 3. Extracellular resistance, r0, is 0. Pamiętając Vm is function of time and distance from the site of injection. The decrease in Vm with distance is given by Ohm’s law: Dostajemy r-nie kablowe The decrease in ii with distance is equal to the current that flows across the membrane: W innej postaci Dostajemy stała przestrzenna (długości)

Rozwiązanie równania kablowego – kabel nieskończony Wprowadzamy nowe zmienne R-nie kablowe Rozwiązanie ogólne r-nia kablowego dla kabla nieskończonego erfc(x) – komplementarna funkcja błędu

Rozwiązanie równania kablowego – kabel nieskończony Rozwiązanie stacjonarne Szukamy rozwiązania stacjonarnego Znaczenie l: l określa własności kabla w stanie ustalonym; jest to odległość, na której napięcie w stanie ustalonym maleje e razy. lub Opór wejściowy - kabel nieskończony Opór wejściowy - kabel półnieskończony

Rozwiązanie równania kablowego – kabel nieskończony Rozwiązanie przejściowe Szukamy rozwiązania przejściowego dla X = 0 Kabel nieskończony Kabel półnieskończony

Rozwiązanie przejściowe a stała czasowa błony Rozwiązanie przejściowe dla X = 0: Stała czasowa błony: Rozwiązanie równia kablowego dla x = 0, było bardzo ważnym wynikiem otrzymanym przez Ralla. Wielu badaczy zakładało, że wzrost V dla stałego impulsu prądowego jest opisany funkcją eksponencjalną. Stałą czasową błony tm szacowano mierząc czas, po jakim wartość V wzrasta do 63% wartości w stanie ustalonym. Szacowanie to dawało zbyt małą stałą czasową (erf wzrasta do 63% wartości w stanie ustalonym w czasie T~0.4). Porównanie funkcji erf i 1 - exp

Rozwiązanie równania kablowego – kabel nieskończony Pełne rozwiązanie Dla dużych t, rozkład potencjału wzdłuż kabla jest rozwiązaniem w stanie ustalonym. Dla czasów pośrednich, spadek potencjału wzdłuż kabla jest szybszy niż w stanie ustalonym. Dla x = 0 narastanie potencjału jest opisane funkcją erfc(T1/2). Dla rosnących wartości x, krzywe wskazują wolniejszy wzrost i osiągają mniejsze wartości w stanie ustalonym. Rozwiązanie równania kablowego w x i t dla impulsu prądowego w x = 0 i kabla półnieskończonego

Rozwiązanie równania kablowego – kabel skończony Rozwiązanie stacjonarne R-nie kablowe x = 0 x = l W stanie ustalonym Warunki brzegowe dla x = l - koniec zamknięty - koniec otwarty Dostajemy Nowe zmienne odległość elektrotoniczna długość elektrotoniczna Rozwiązanie ogólne Cosinus i sinus hiperboliczny

Rozwiązanie równania kablowego – kabel skończony Rozwiązanie stacjonarne Rozwiązanie ogólne możemy zapisać Lub Dla X = L Podstawmy BL = C2/VL i wstawmy do równania: BL jest warunkiem brzegowym dla różnego rodzaju zakończenia kabla. Dla X = 0: Lub

Zanik napięcia dla impulsu prądowego w x = 0 i kabla skończonego. Rozwiązanie równania kablowego – kabel skończony Rozwiązanie stacjonarne Ostatecznie rozwiązanie stacjonarne Wpływ warunków brzegowych: - przewodnictwo na zakończeniu kabla, - przewodnictwo kabla półnieskończonego 1. Dla czyli tak jak dla kabla półnieskończonego 2. Dla czyli kabel skończ. zamknięty kabel skończ. otwarty kabel półnieskończ. (koniec zamknięty) 3. Dla czyli (koniec otwarty) Zanik napięcia dla impulsu prądowego w x = 0 i kabla skończonego.

Rozwiązanie równania kablowego – kabel skończony Rozwiązanie przejściowe Rozwiązanie przejściowe można zapisać w postaci: gdzie Pierwszy człon: odpowiada stałej czasowej membrany: jeżeli membrana jest jednorodna. Narastanie napięcia w kablu skończonym o różnych długościach elektrotonicznych . Impuls prądowy podawany oraz napięcie mierzone w x = 0.

Rozwiązanie równania kablowego – prąd zmienny Spadek napięcia w kablu wraz z odległością, będzie większy dla podawanego prądu zmiennego. Stała długości dla prądu zmiennego (AC) i stałego (DC) związane są zależnością: f – częstość (w Hz) Spadek napięcia w kablu skończonym (L = 1) dla różnych częstości impulsu prądowego podawanego w x = 0 (soma)

Model Ralla W latach 60-tych i 70-tych, Wilfred Rall zastosował teorię kablową do analizy sumowania wejść synaptycznych w dendrytach. Założenia Jednorodne właściwości membrany Ri, Rm, Cm R0 = 0 Izopotencjalna soma, najczęściej – izopotencjalna sfera. Wszystkie dendryty mają tą samą długość elektrotoniczną

Model Ralla Schemat neuronu z drzewem dendrytycznym. X1, X2, X3 – punkty rozgałęzienia, d – średnica. Kable ‘końcowe’ rozciągają się do nieskończoności, tworzą więc kable półnieskończone. Opór wejściowy - kabel półnieskończony

Model Ralla - cd Opór wejściowy - kabel półnieskończony Przewodnictwo - kabel półnieskończony Przewodnictwo w punkcie X3 Upraszczając Jeśli w punkcie X3 przedłużymy d211 do nieskończoności to Jeśli Przewodnictwo gałęzi d3111 to gałęzie d3111 i d3112 są równoważne matematycznie rozciągnięciu gałęzi d211 do nieskończoności! Oraz podobnie dla d3112

Model Ralla - cd Jeśli zrobimy taką samą operacje dla gałęzi d212, to w X2 mamy dwa półnieskończone kable d211 i d212 przyłączone do gałęzi d11. Jeśli Stosując regułę potęgi 3/2 to co jest równoważne rozciągnięciu gałęzi d11 do nieskończoności. możemy zredukować drzewo dendrytyczne o dowolnej ilości rozgałęzień do równoważnego kabla półnieskończonego. Wiele rzeczywistych drzew dendrytycznych w neuronach kory i hipokampa wykazuje regułę potegi 3/2.

Model Ralla – cd Równoważny kabel skończony Dla dendrytów, zazwyczaj l < 2l, co odpowiada kablowi skończonemu. Przewodnictwo dla kabla skończonego również zwiera element d3/2. L – długość elektrotoniczna, taka sama dla wszystkich dendrytów. Korzystając z zależności: Można zapisać: Stosując regułę potęgi 3/2 oraz założenie, że wszystkie dendryty maja takie same L możemy zredukować dowolne drzewo dendrytyczne do równoważnego kabla skończonego. Pamiętając, że dla pojedynczego kabla, L = l/l, można zapisać całkowitą długość elektrotoniczna kabla równoważnego:

Model Ralla – zastosowanie do impulsów synaptycznych Krótki impuls prądowy podawany w somie, w połowie kabla i na końcu kabla Wnioski z modelu: amplituda EPSP w somie maleje wraz z odległością powstania impulsu stała narastania oraz pozycja maksimum maleje z odległością powstania impulsu końcowa stała zaniku jest taka sama dla wszystkich odległości

Narastanie i zanik potencjałów postsynaptycznych Przewodnictwo synaptyczne gs i potencjał postsynaptyczny EPSP Synapsa A Stała czasowa narastania Cm/(GsA + Gr) Stała czasowa zanikania Cm/ Gr Synapsa A + B Stała czasowa narastania Cm/(GsA + GsA + Gr) Stała czasowa zanikania Cm/ Gr Obwód zastępczy dla dwóch synaps A i B. Gr i Er odpowiada spoczynkowemu przewodnictwu i spoczynkowemu potencjałowi błony postsynaptycznej.

Sumowanie przestrzenne i czasowe potencjałów postsynaptycznych

Procesy w dendrytach Przykład sumowania impulsów dendrytycznych w modelu neuronu. Z Arbib, M. A., 1989, The Metaphorical Brain 2: Neural Networks and Beyond, New York: Wiley-Interscience, p. 60.

Procesy w dendrytach – modele komputerowe Morfologie dendrytów (a, b,c) i ich realistyczne modele komputerowe (d,e) Modele komputerowe dendrytów (A) w postaci kablowej (B) i w postaci dyskretnych izopotencjalnych układów RC - model kompartmentowy ( C). 4D obrazowanie neuronu przy użyciu mikroskopii dwufotonowej

Procesy w dendrytach - podsumowanie Z Idan Segev and Michael London Dendritic Processing. Rozdział w M. Arbib (edytor). The Handbook of Brain Theory and Neural Networks. THE MIT PRESS Cambridge, Massachusetts London, England, 2002

Procesy w dendrytach – asymetria oraz filtrowanie Opór wejściowy - kabel półnieskończony Zanik napięcia z synapsy dystalnej jest szybszy niż z synapsy proxymalnej. W wyniku pasywnych własności (RC) dendrytów, tworzy się filtr dolnoprzepustowy dla wejść synaptycznych. Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000

Procesy w dendrytach – sumowanie nieliniowe i wpływ tła Nieliniowe sumowanie wejść synaptycznych z synaps na tej samej gałęzi i liniowe sumowanie z synaps na różnych gałęziach. Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000 Dynamiczne skalowanie parametrów kablowych poprzez aktywność tła. Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000

Dendryty aktywne Efektywność klastrów synaps pobudzających w generowaniu odpowiedzi komórki. Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000 Somo – dendrytyczny ping – pong. Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000

Kodowanie informacji przez dendryty Analiza wejście –wyjście neuronu przy użyciu analizy informacji.A. 400 synaps pobudzających aktywowanych 10 razy/s i 100 synaps hamujących pobudzanych 65 razy/s w sposób losowy. B. EPSP w somie. C. Pozycja jednej synapsy pobudzającej zmieniona z dystalnej na proxymalną. D. Informacja wzajemna (mutual information MI). Synapsy dystalne przekazują znacząco mniej informacji niż synapsy proxymalne.Z Idan Segev i Michael London. Untangling Dendrites with Quantitative Models. Science 290, 2000