Wytrzymałość materiałów

Slides:



Advertisements
Podobne prezentacje
Równowaga chemiczna - odwracalność reakcji chemicznych
Advertisements

Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
Mechanika płynów. Prawo Pascala (dla cieczy nieściśliwej) ( ) Blaise Pascal Ciśnienie wywierane na ciecz rozchodzi się jednakowo we wszystkich.
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Cel analizy statystycznej. „Człowiek –najlepsza inwestycja”
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Badania elastooptyczne Politechnika Rzeszowska Katedra Samolotów i Silników Lotniczych Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów Temat ćwiczenia:
Wypadkowa sił.. Bardzo często się zdarza, że na ciało działa kilka sił. Okazuje się, że można działanie tych sił zastąpić jedną, o odpowiedniej wartości.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
KLASA VI 1. WSTĘP – Układy współrzędnych – przykłady 2. UKŁAD WSPÓŁRZĘDNYCH X-Y – definicja, rzędne, odcięte, początek układu. 3. WSPÓŁRZĘDNE PUNKTU –
To znaczy, że składa się z dwóch identycznych części, które można na siebie nałożyć. Na przykład człowiek (w niektórych miejscach) jest takim stworem.
Budżet rodzinny Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji) Nauka o trwałości spotykanych w praktyce typowych elementów konstrukcji pod działaniem.
Wytrzymałość materiałów (WM II – wykład 11 – część A)
Wytrzymałość materiałów
W kręgu matematycznych pojęć
Wytrzymałość materiałów
Wytrzymałość materiałów
MECHANIKA 2 Dynamika układu punktów materialnych Wykład Nr 9
Wytrzymałość materiałów
WYPROWADZENIE WZORU. PRZYKŁADY.
RUCH KULISTY I RUCH OGÓLNY BRYŁY
Wytrzymałość materiałów
Wytrzymałość materiałów
Metody teledetekcyjne w badaniach atmosfery
Wytrzymałość materiałów
Wytrzymałość materiałów
Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ
Podstawy automatyki I Wykład /2016
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość materiałów
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Zajęcia przygotowujące do matury rozszerzonej z matematyki
PROCESY SZLIFOWANIA POWIERZCHNI ŚRUBOWYCH
Wytrzymałość materiałów
Moment gnący, siła tnąca, siła normalna
Wytrzymałość materiałów
PODSTAWY MECHANIKI PŁYNÓW
Wytrzymałość materiałów WM-I
Wytrzymałość materiałów
Tensor naprężeń Cauchyego
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość materiałów
Prowadzący: dr inż. Adam Kozioł Temat:
+ Obciążenia elementów przekładni zębatych
Warszawa, 23 października 2017
Przepływy w ośrodkach porowatych
Wytrzymałość materiałów
Wytrzymałość materiałów
Mechanika płynów Dynamika płynu lepkiego Równania Naviera-Stokesa
Wytrzymałość materiałów
Prawa ruchu ośrodków ciągłych c. d.
Wytrzymałość materiałów
Wytrzymałość materiałów
Wytrzymałość materiałów
3. Wykres przedstawia współrzędną prędkości
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Elipsy błędów.
Wytrzymałość materiałów (WM II – wykład 11 – część B)
Zapis prezentacji:

Wytrzymałość materiałów (WM I - 7) r.a. 2018/2019

SPRAWY ORGANIZACYJNE Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Prowadzący: dr hab. inż. Mirosław K. Gerigk, prof. nadzw. PG e-mail: mger@pg.gda.pl Wydział Mechaniczny PG Katedra Mechaniki i Mechatroniki, p. 107 WM Konsultacje: Poniedziałki: 14.00-15.15, Czwartki: 14.00-15.15

Wykład W7: Ścinanie pręta (pręt ścinany): - Równanie równowagi - Rozkład naprężeń stycznych - Naprężenia dopuszczalne na ścinanie - Warunek wytrzymałości dla napręzęń dopuszczalnych na ścinanie Przykłady praktyczne prętów ścinanych Przykład obliczeniowy: Analiza wytrzymałości wybranego pręta na ścinanie. Autorstwo poniższego wykładu: © Prof. Krzysztof Kaliński http://pg.edu.pl/288cd25679_miroslaw.gerigk/wizytowka

Pręt ścinany q(x) t h Mg+d Mg T Mg x z S T+dT dx b A’ y y Rozważmy odcinek belki dx o małej rozpiętości poddany zginaniu nierównomiernemu o przekroju prostokątnym (podstawa o wymiarze b, i wysokości h). dx x y q(x) Mg Mg+d Mg T T+dT z y b h S A’ t , 2019-04-23 22:32:12

Pręt ścinany sdA dx A’ t b (s + d s )dA Równanie równowagi odciętej dolnej części elementu belki ma postać: skąd: 2019-04-23 22:32:12

Pręt ścinany Ponieważ: to: Zważywszy że: gdzie: Sz – moment statyczny odciętej części przekroju belki względem osi obojętnej z. 2019-04-23 22:32:12

Pręt ścinany Ostatecznie otrzymujemy wzór Żurawskiego opisujący rozkład naprężeń stycznych wywołanych siłą poprzeczną T w przekroju belki: Wzór ten ma również zastosowanie, jeśli szerokość b zmienia się wzdłuż wysokości przekroju. W przekroju prostokątnym rozkład naprężeń t jest paraboliczny: 2019-04-23 22:32:12

Pręt ścinany Maksymalne naprężenia styczne τ max występujące w warstwie obojętnej przekroju prostokątnego (dla y = 0): Maksymalne naprężenia styczne t max występujące w warstwie obojętnej przekroju kołowego o średnicy d (dla y = 0): Warunek wytrzymałości dla naprężeń dopuszczalnych na ścinanie: 2019-04-23 22:32:12

Pręt ścinany T Ms S z z z S kz z S tz y T K Tz ty ky Ty T y y y Jeśli oś symetrii przekroju poprzecznego pręta nie pokrywa się z linią działania siły poprzecznej T, to wystąpi również moment skręcający Ms: gdzie: τz, τy – składowe naprężenia stycznego wywołanego odpowiednio siłami poprzecznymi Tz i Ty. Kierunek wypadkowego naprężenia stycznego nie pokrywa się z kierunkiem siły poprzecznej T Wówczas oprócz ścinania wywołanego siłą T, występuje również skręcanie momentem skręcającym Ms. T Ms S z z z S kz z S tz y T K Tz ty ky Ty T y y y 2019-04-23 22:32:12

Pręt ścinany Aby Ms=0, linia działania siły T musi przechodzić przez punkt K o współrzędnych ky i kz, zwany środkiem ścinania. Moment skręcający Ms jest równoważony przez sumę momentów wywołanych przez składowe Ty i Tz siły poprzecznej T względem środka geometrycznego przekroju S: Współrzędne środka ścinania K określają zależności: 2019-04-23 22:32:12

Pręt ścinany Jeśli obciążenie zewnętrzne będzie działać w płaszczyźnie równoległej do osi x, przechodzącej przez środek ścinania K, to spowoduje ścinanie bez dodatkowego skręcania. Jeśli przekrój poprzeczny pręta ma oś symetrii, to środek ścinania leży na niej, natomiast gdy przekrój ma dwie osie symetrii, to środek ścinania K, pokrywa się ze środkiem geometrycznym S. W obliczeniach technicznych typowych elementów o małych polach powierzchni przekrojów poprzecznych (nitów, sworzni, spoin pachwinowych) przyjmuje się uproszczenie, że naprężenia styczne są rozłożone równomiernie na powierzchni przekroju. Wówczas naprężenia styczne t są stałe w całym przekroju i równają się naprężeniom stycznym średnim tśr: 2019-04-23 22:32:12

Dziękuję za uwagę !!! 2019-04-23 22:32:12