Równania różniczkowe zwyczajne

Slides:



Advertisements
Podobne prezentacje
Wprowadzenie do ODEs w MATLAB-ie
Advertisements

Wprowadzenie do ciągłych układów dynamicznych
Równowaga chemiczna - odwracalność reakcji chemicznych
Plan Czym się zajmiemy: 1.Bilans przepływów międzygałęziowych 2.Model Leontiefa.
Ekonometria stosowana WYKŁAD 4 Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Metody optymalizacji - Energetyka 2015/2016 Metody programowania liniowego.
© Matematyczne modelowanie procesów biotechnologicznych - laboratorium, Studium Magisterskie Wydział Chemiczny Politechniki Wrocławskiej, Kierunek Biotechnologia,
Ekonometria stosowana Autokorelacja Piotr Ciżkowicz Katedra Międzynarodowych Studiów Porównawczych.
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
Podstawowe pojęcia termodynamiki chemicznej -Układ i otoczenie, składniki otoczenia -Podział układów, fazy układu, parametry stanu układu, funkcja stanu,
Badania elastooptyczne Politechnika Rzeszowska Katedra Samolotów i Silników Lotniczych Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów Temat ćwiczenia:
Wypadkowa sił.. Bardzo często się zdarza, że na ciało działa kilka sił. Okazuje się, że można działanie tych sił zastąpić jedną, o odpowiedniej wartości.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Rozwiązywanie równań I-go stopnia z jedną niewiadomą
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Funkcja liniowa Przygotował: Kajetan Leszczyński Niepubliczne Gimnazjum Przy Młodzieżowym Ośrodku Wychowawczym Księży Orionistów W Warszawie Ul. Barska.
W KRAINIE TRAPEZÓW. W "Szkole Myślenia" stawiamy na umiejętność rozumowania, zadawania pytań badawczych, rozwiązywania problemów oraz wykorzystania wiedzy.
Pakiety numeryczne Równania różniczkowe Łukasz Sztangret Katedra Informatyki Stosowanej i Modelowania.
Menu Jednomiany Wyrażenia algebraiczne -definicja Mnożenie i dzielenie sum algebraicznych przez jednomian Mnożenie sum algebraicznych Wzory skróconego.
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Katarzyna Rychlicka Wielomiany. Katarzyna Rychlicka Wielomiany Przykłady Wykresy funkcji wielomianowych Równania wielomianowe Działania na wielomianach.
Opracowanie Joanna Szymańska Konsultacja Bożena Hołownia.
Renata Maciaszczyk Kamila Kutarba. Teoria gier a ekonomia: problem duopolu  Dupol- stan w którym dwaj producenci kontrolują łącznie cały rynek jakiegoś.
Rozwiązywanie zadań tekstowych przy pomocy układów równań. Opracowanie: Beata Szabat.
Analiza numeryczna i symulacja systemów 2. Równania różniczkowe zwyczajne - cz.2 - metody Rungego-Kutty Janusz Miller.
 Przedziałem otwartym ( a;b ) nazywamy zbiór liczb rzeczywistych x spełniających układ nierówności x a, co krócej zapisujemy a
Przykład 1: Określ liczbę pierwiastków równania (m-1)x 2 -2mx+m=0 w zależności od wartości parametru m. Aby określić liczbę pierwiastków równania, postępujemy.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
 Austriacki fizyk teoretyk,  jeden z twórców mechaniki kwantowej,  laureat nagrody Nobla ("odkrycie nowych, płodnych aspektów teorii atomów i ich zastosowanie"),
O PARADOKSIE BRAESSA Zbigniew Świtalski Paweł Skałecki Wydział Matematyki, Informatyki i Ekonometrii Uniwersytet Zielonogórski Zakopane 2016.
Wytrzymałość materiałów
Test analizy wariancji dla wielu średnich – klasyfikacja pojedyncza
Minimalizacja automatu
Model Lopesa da Silvy – opis matematyczny
Wyznaczanie miejsc zerowych funkcji
DEFINICJA I ZASTOSOWANIE W JĘZYKU HASKELL
MECHANIKA 2 Dynamika układu punktów materialnych Wykład Nr 9
Metody matematyczne w Inżynierii Chemicznej
RUCH KULISTY I RUCH OGÓLNY BRYŁY
7. Oscylator harmoniczny
Wytrzymałość materiałów
MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH
Prowadzący: dr Krzysztof Polko
Liczby pierwsze.
Podstawy automatyki I Wykład /2016
Funkcja – definicja i przykłady
Wytrzymałość materiałów
Elementy analizy matematycznej
Materiały pochodzą z Platformy Edukacyjnej Portalu
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Wykład IV Ruch harmoniczny
Zajęcia przygotowujące do matury rozszerzonej z matematyki
Elementy fizyki kwantowej i budowy materii
PROGRAM WYKŁADU Analiza obwodów liniowych pobudzanych okresowymi przebiegami niesinusoidalnymi. Szereg Fouriera w postaci trygonometrycznej i wykładniczej.
Wytrzymałość materiałów
Ekonometria stosowana
Tensor naprężeń Cauchyego
Problem Plecakowy (Problem złodzieja okradającego sklep)
Wytrzymałość materiałów
Modelowanie układów dynamicznych
Wytrzymałość materiałów
Wyrównanie sieci swobodnych
Prawa ruchu ośrodków ciągłych c. d.
Wytrzymałość materiałów
Przykładowe zadanie i ich rozwiązana
Zapis prezentacji:

Równania różniczkowe zwyczajne (ang. ordinary differential equations, ODE) Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci gdzie jest daną funkcją. Rozwiązaniem takiego równania nazywamy każdą funkcję która jest różniczkowalna i spełniania równość Często rozwiązanie oznaczać także symbolem y(t), więc powyższy warunek zapiszemy jako

Przykład Rozważmy równanie Przykładowe rozwiązanie Sprawdzamy przez podstawienie Podane rozwiązanie nie jest jedyne, gdyż na przykład funkcja też spełnia to równanie.

Przykład Rozważmy równanie Sprawdzamy, że funkcja jest rozwiązaniem: W ogólnym przypadku każda funkcja postaci jest rozwiązaniem tego równania.

Zagadnieniem początkowym (zagadnieniem Cauchy’ego, problemem początkowym) nazywamy następujące dwa warunki gdzie są danymi liczbami (warunek początkowy), a jest daną funkcją. Rozwiązaniem tak postawionego problemu jest dowolna funkcja y=y(t), która spełnia równanie, czyli y’(t)=f(t, y(t)) dla t z otoczenia t0, a ponadto spełnia warunek początkowy, czyli y(t 0)= y0.

Przykład Jakie jest rozwiązanie zagadnienia Cauchy’ego Rozwiązanie ogólne równania y’ = t y ma postać Podstawiamy warunek początkowy y(0)=2, co daje C=2. Zatem rozwiązaniem zagadnienia Cauchy’ego jest funkcja

Przykład Jakie jest rozwiązanie poniższego zagadnienia Cauchy’ego Rozwiązaniem problemu jest funkcja stale równa zero Ale rozwiązaniem jest także funkcja Mamy zatem przykład niejednoznaczności rozwiązania! Okazuje się jednak, że przy dość ogólnych założeniach rozwiązanie zagadnienia Cauchy’ego jest jednak jednoznaczne. Taka sytuacja najczęściej występuje w zastosowaniach równań różniczkowych zwyczajnych.

Synteza bromowodoru z pierwiastków Synteza bromowodoru z pierwiastków jest reakcją złożoną o sumarycznym równaniu W roku 1906 wyznaczono eksperymetalnie następujące równanie kinetyczne tej reakcji Czasami równanie to jest zapisywane równoważnie tak Stałe kinetyczne k1 oraz k2 zależą od warunków przebiegu reakcji (temperatura, ciśnienie itp.). Eksperymetalnie wyznaczono, że w zwykłych warunkach k2≈0,1.

Synteza bromowodoru z pierwiastków (c.d.) Wprowadzamy oznaczenie y(t) = [HBr] oraz uwzględniamy bilans masy w równaniu co daje dodatkowe zależności Po podstawieniu do równania kinetycznego na d[HBr]/dt otrzymamy

Synteza bromowodoru z pierwiastków (c.d.) Przeprowadzając symulację podanego układu dynamicznego możemy precyzyjnie przewidzieć ewolucję stężenia składników – a w szczególności przewidzieć czas trwania reakcji. Prawdziwa kinetyka syntezy bromowodoru. Gdyby kinetyka syntezy bromowodoru była analogiczna do syntezy chlorowodoru.

Układy równań różniczkowych zwyczajnych (ODEs) W ogólnym przypadku możemy mieć n niewiadomych funkcji y1(t),…,yn(t) oraz n równań: z warunkami początkowymi: gdzie liczby są dane.

Równania Lotki — jedna reakcja autokatalityczna Rozważmy następującą sekwencję reakcji elementarnych: Powyższy mechanizm opisuje ostatecznie sumaryczną reakcję A  B. Z postaci tego mechanizmu możemy postulować następujący układ równań różniczkowych zwyczajnych:

Równania Lotki — jedna reakcja autokatalityczna Symulacje numeryczne Modelu Lotki w MATLAB-ie dla następujących parametrów: Czas symulacji przyjmiemy tend =5·105. Zastosowanie standardowej procedury ode45 (implementujacej metodę Rungego-Kutty 4-tego rzędu) z domyślnymi ustwieniami tolerancji błędów dla przypadku a) daje wyniki:

Równania Lotki — przykładowy portret fazowy Poniżej jest przedstawiony portret fazowy układu Lotki dla danych z punktu a). Portret fazowy oznacza, że rysujemy wyniki obliczeń w układzie y1-y2. Tzn. na osi OX odkładane są wartości y1(t), a na osi OY wartości y2(t).

Równania Lotki-Volterry (dwie reakcje autokatalityczne) Jest to model podobny do modelu Lotki, ale tym razem występują dwie reakcje autokatalityczne: Powyższa sekwencja opisuje sumaryczną reakcję AB. Z postaci podanego mechanizmu możemy postulować następujący układ równań różniczkowych zwyczajnych:

Równania Lotki-Volterry (dwie reakcje autokatalityczne – c.d.) W układzie reakcji Lotki-Volterry zakładamy, że stężenie reagenta A jest stałe: [A]=const. Wprowadzając wygodne oznaczenia: [X]=y1(t), [Y]=y2(t), [A]=a, możemy układ równań zapisać następująco: Układ ten ma ciekawą własność – występują w nim rozwiązania okresowe. Dokładnej, dla każdej pary warunków początkowych y1(0)=y10 > 0, y2(0)=y20 > 0 rozwiązania y1(t), y2(t) istnieją dla wszystkich t  0 i są funkcjami okresowymi.

Układ Lotki-Volterry jako prosty model drapieżnik-ofiara Ten sam układ równań może być wykorzystany do opisu prostego modelu interakcji pomiędzy dwoma populacjami: ofiar i drapieżników. gdzie

Układ Lotki-Volterry – przykładowe symulacje Do obliczeń weźmiemy następujące dane:

Ewolucja czasowa i portrety fazowe Przykładowe rozwiązania y1(t), y2(t) oraz portret fazowy dla układu Lotki-Volterry.

Bruselator Jest to teoretyczny model dla autokatalitycznej reakcji z wszystkimi etapami nieodwracalnymi i takimi samymi stałymi szybkości k1=k2=k3=k4=1. Procesem sumarycznym jest: A+BD+E. Powyższy mechanizm prowadzi do następującego układu, gdy szybkość reakcji jest określona przez postacie reakcji

Wprowadzamy wygodniejsze oznaczenia: Parametry a i b są dodatnimi stałymi. Niewiadomymi są funkcje y1=y1(t), y2=y2(t). Równania opisujące Bruselator mają teraz postać: Powyższy układ równań generuje rozwiązania, których jakościowy charakter może istotnie się różnić w zależności od wzajemnej relacji parametrów a i b. W szczególności punkt stacjonarny tego układu staje się niestabilny gdy

Przykładowe dane do modelu Bruselator W obu przypadkach czas procesu tend = 80. Jeśli zmieniając stężenie [B] osiągniemy wartość krtytyczną [B]kr=[A]2+1, to następuje tzw. bifurkacja Hopfa. Dotychczasowy pojedynczy stan stacjonarny traci stabilność – w zakresie stężeń [B] > [A]2 + 1 obserwujemy zupełnie inne zachowanie – stabilne oscylacje stężeń [X] i [Y].

Przykładowe dane do modelu Bruselator W obu przypadkach czas procesu tend = 120. a) [B]>[B]kr=[A]2+1=2 b) [B]<[B]kr=[A]2+1=2