Autor dr inż. Andrzej Rylski MIERNICTWO PRZEMYSŁOWE 1. K A R T A P R Z E D M I O T U 2. Analiza metrologiczna modelu fizycznego toru pomiarowego.

Slides:



Advertisements
Podobne prezentacje
Wzmacniacz operacyjny
Advertisements

Proces doboru próby. Badana populacja – (zbiorowość generalna, populacja generalna) ogół rzeczywistych jednostek, o których chcemy uzyskać informacje.
© IEn Gdańsk 2011 Wpływ dużej generacji wiatrowej w Niemczech na pracę PSE Zachód Robert Jankowski Andrzej Kąkol Bogdan Sobczak Instytut Energetyki Oddział.
Klasyfikacja dalmierzy może być dokonywana przy założeniu rozmaitych kryteriów. Zazwyczaj przyjmuje się dwa:  ze względu na rodzaj fali (jej długości)
© IEn Gdańsk 2011 Technika fazorów synchronicznych Łukasz Kajda Instytut Energetyki Oddział Gdańsk Zakład OGA Gdańsk r.
WYKŁAD 1 Podstawowe pojęcia. Metrologia Metrologia jest nauka interdyscyplinarną z pogranicza techniki i prawa. Korzysta ona ze zdobyczy prawie wszystkich.
Równowaga chemiczna - odwracalność reakcji chemicznych
Autor dr inż. Andrzej Rylski 1. Analiza metrologiczna modelu fizycznego toru pomiarowego Pomiary elektryczne wielkości nieelektrycznych.
Blok I: PODSTAWY TECHNIKI Lekcja 6: Zjawisko tarcia i jego wpływ na pracę ciągników i maszyn rolniczych (1 godz.) 1. Zjawisko tarcia 2. Tarcie ślizgowe.
Zarządzanie Zmianą Sesja 3 Radzenie sobie z ludzkimi aspektami zmiany: opór.
Tworzenie odwołania zewnętrznego (łącza) do zakresu komórek w innym skoroszycie Możliwości efektywnego stosowania odwołań zewnętrznych Odwołania zewnętrzne.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
Urząd Transportu Kolejowego, Al. Jerozolimskie 134, Warszawa, Polityka regulacyjna państwa w zakresie dostępu do infrastruktury na.
Rozliczanie kosztów działalności pomocniczej
Niepewności pomiarowe. Pomiary fizyczne. Pomiar fizyczny polega na porównywaniu wielkości mierzonej z przyjętym wzorcem, czyli jednostką. Rodzaje pomiarów.
Ćwiczenia Zarządzanie Ryzykiem Renata Karkowska, ćwiczenia „Zarządzanie ryzykiem” 1.
Finansowanie wybranych działań w parkach narodowych przy udziale środków funduszu leśnego - zakres finansowy Warszawa, 06 kwietnia 2016r.
Wyrażenia Algebraiczne Bibliografia Znak 1Znak 2 Znak 3 Znak 4 Znak 5 Znak 6 Znak 7 Znak 8 Znak 9 Znak 10 Znak 11.
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
autor dr inż. Andrzej Rylski TECHNIKA SENSOROWA 6.Producenci sensorów i urządzeń do pomiaru temperatury.
Ryzyko a stopa zwrotu. Standardowe narzędzia inwestowania Analiza fundamentalna – ocena kondycji i perspektyw rozwoju podmiotu emitującego papiery wartościowe.
 Głośnik – przetwornik elektroakustyczny (odbiornik energii elektrycznej) przekształcający prąd elektryczny w falę akustyczną. Idealny głośnik przekształca.
Projekt Regulaminu Działania Komitetu Monitorującego Regionalny Program Operacyjny Województwa Pomorskiego na lata
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Kwantowy opis atomu wodoru Łukasz Palej Wydział Górnictwa i Geoinżynierii Kierunek Górnictwo i Geologia Kraków, r
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Wypadkowa sił.. Bardzo często się zdarza, że na ciało działa kilka sił. Okazuje się, że można działanie tych sił zastąpić jedną, o odpowiedniej wartości.
Zmienne losowe Zmienne losowe oznacza się dużymi literami alfabetu łacińskiego, na przykład X, Y, Z. Natomiast wartości jakie one przyjmują odpowiednio.
Autor dr inż. Andrzej Rylski TECHNIKA SENSOROWA 1. K A R T A P R Z E D M I O T U 2. Analiza metrologiczna modelu fizycznego toru pomiarowego.
Mierniki aktywności gospodarczej. Mierniki aktywności gospodarczej - zespół odpowiednio przygotowanych i przetworzonych danych statystycznych przedstawiających.
Analiza tendencji centralnej „Człowiek – najlepsza inwestycja”
Równowaga rynkowa w doskonałej konkurencji w krótkim okresie czasu Równowaga rynkowa to jest stan, kiedy przy danej cenie podaż jest równa popytowi. p.
Geodezyjny monitoring elementów środowiska
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Prezentacja – 4 Matematyczne opracowywanie.
Dodawania i odejmowanie sum algebraicznych. Mnożenie sumy algebraicznej przez jednomian. Opracowanie Joanna Szymańska Konsultacja Bożena Hołownia.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
Metoda kartogramów. Definicja Metoda służy do przedstawiania średniej intensywności zjawiska w granicach określonych pól odniesienia. Wartości obliczane.
Algorytmy Informatyka Zakres rozszerzony
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH MIERNICTWO PRZEMYSŁOWE.
Materiały pochodzą z Platformy Edukacyjnej Portalu Wszelkie treści i zasoby edukacyjne publikowane na łamach Portalu
Zjawisko fotoelektryczne zewnętrzne i wewnętrzne
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
BADANIA STATYSTYCZNE. WARUNKI BADANIA STATYSTYCZNEGO musi dotyczyć zbiorowościstatystycznej musi określać prawidłowościcharakteryzujące całą zbiorowość.
Pole magnetyczne Magnes trwały – ma dwa bieguny - biegun północny N i biegun południowy S.                                                                                                                                                                     
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI ZAKŁAD METROLOGII I SYSTEMÓW POMIAROWYCH METROLOGIA Andrzej Rylski.
Własności elektryczne materii
Optymalna wielkość produkcji przedsiębiorstwa działającego w doskonałej konkurencji (analiza krótkookresowa) Przypomnijmy założenia modelu doskonałej.
Pajęczynowy model równowagi rynkowej To jest pierwszy dynamiczny model. Wszystkie poprzednie to były modele statyczne. Model ten opisuje rynki, które.
Elektron(y) w atomie - zasada nieoznaczoności Heisenberga - orbital atomowy (poziom orbitalny) - kontur orbitalu - reguła Hunda i n+l - zakaz Pauliego.
Definiowanie i planowanie zadań typu P 1.  Planowanie zadań typu P  Zadania typu P to zadania unikalne służące zwykle dokonaniu jednorazowej, konkretnej.
Transformacja Lorentza i jej konsekwencje
Zasada równości szans kobiet i mężczyzn (w oparciu o standard minimum) Olsztyn, 6 czerwca 2016r.
Od recesji do koniunktury.. Podstawowe pojęcia. Recesja – zjawisko makroekonomiczne polegające na znacznym zahamowaniu tempa wzrostu gospodarczego, skutkujące.
1 Definiowanie i planowanie zadań budżetowych typu B.
Renata Maciaszczyk Kamila Kutarba. Teoria gier a ekonomia: problem duopolu  Dupol- stan w którym dwaj producenci kontrolują łącznie cały rynek jakiegoś.
M ETODY POMIARU TEMPERATURY Karolina Ragaman grupa 2 Zarządzanie i Inżynieria Produkcji.
Budżetowanie kapitałowe cz. III. NIEPEWNOŚĆ senesu lago NIEPEWNOŚĆ NIEMIERZALNA senesu strice RYZYKO (niepewność mierzalna)
HAMULCE BĘBNOWE.
Schematy blokowe.
ILE WAŻY PIÓRKO ?.
System wspomagania decyzji DSS do wyznaczania matematycznego modelu zmiennej nieobserwowalnej dr inż. Tomasz Janiczek.
KOREKTOR RÓWNOLEGŁY DLA UKŁADÓW Z NIEMINIMALNOFAZOWYMI OBIEKTAMI Ryszard Gessing Instytut Automatyki, Politechnika Śląska Plan referatu Wprowadzenie.
Zajęcia przygotowujące do matury rozszerzonej z matematyki
Prawa ruchu ośrodków ciągłych c. d.
Zapis prezentacji:

autor dr inż. Andrzej Rylski MIERNICTWO PRZEMYSŁOWE 1. K A R T A P R Z E D M I O T U 2. Analiza metrologiczna modelu fizycznego toru pomiarowego

K A R T A P R Z E D M I O T U

Program: 1.błędy w procesie porcjowania, 2.błędy systematyczne podczas konfekcjonowania wagą z odczytem cyfrowym, 3.analiza toru pomiarowo - obliczeniowego wagi cyfrowej 4.metrologiczny opis toru pomiaru masy 5.analiza doboru dokładności zaokrąglania błędów dla obliczenia wartości, 6.analiza błędów toru pomiaru masy, 7.analiza błędów toru obliczenia wartości 8.rozwiązanie zadań z procesu ważenia wagą o szczegółowym opisie błędów i dla wagi ANGEL15MX Analiza metrologiczna modelu fizycznego toru pomiarowego

Literatura: 1.Rylski A., Sensory i przetworniki wielkości nieelektrycznych - zadania, str. 47 – 85 skrypt, Wydawnictwa Politechniki Rzeszowskiej 1994, 2.Rylski A., Metrologia - wybrane zagadnienia. Zadania, str , skrypt Wydanie III, Wydawnictwa Politechniki Rzeszowskiej 2004, 3.Rylski A., Metrologia II prąd zmienny, str , skrypt, Wydawnictwa Politechniki Rzeszowskiej 2004 Analiza metrologiczna modelu fizycznego toru pomiarowego

1.1 Błędy w procesie porcjowania Zadanie 1. Obliczyć możliwe straty poniesione w czasie porcjowania herbaty o wartości 40zł/kg, jeżeli szybkość konfekcjonowania wynosi 100 kg/h. Pomiaru dokonywano wagą o błędzie nieczułości 0,1 dag i dokładności  w =  0,01%, odważnikami 10 dag klasy 0,1 %. Dane: Waga  m ncw = 0,1 dag = 0,001 kg  w =  0,01% Odważnik m = 0,1 kg, kl = 0,1 %  m kl =   kg Masa jednostkowam j = 10 dag = 0,1 kg Szybkość porcjowaniam c1 = 100 kg/h Cena 1 kg herbatyc j = 40 zł/kg

1.1 Błędy w procesie porcjowania Zadanie 1. Rozwiązanie Błąd w pomiarze 0,1 kg herbaty Błąd w konfekcjonowaniu 100 kg herbaty Maksymalne straty w ciągu 1h Maksymalne straty w ciągu doby Maksymalne straty w ciągu roku

1.1 Błędy w procesie porcjowania Zadanie 1. Komentarz  mw – błąd podstawowy wagi, wynika on z nierównomiernej długości ramion wagi, ten błąd ma charakter multiplikatywny, wartość bezwzględna tego błędu rośnie proporcjonalnie do ważnej masy, ma swój znak, ze względu na wygodę zdefiniowano do jako moduł jego wartości,  mncw – błąd nieczułości wagi, jest związany z oporami tarcia, których siła jest skierowana zawsze przeciwnie do kierunku ruchu, ma swój znak, ze względu na wygodę zdefiniowano go jako moduł jego wartości  mkl – sposób wzorcowania odważnika jest podobny do ważenia, jedynie elementy układu mają wyższą klasę dokładności, błąd ten powinien być opisany błędem multiplikatywnym i addytywnym, z uwzględnieniem znaku, ze względu na wygodę zdefiniowano go jako moduł sumy tych wartości, z uwagi na zastosowane uproszczenia, nie znany sposób pracy wagi, nie można powiedzieć nic o znaku błędu, analiza tego typu pomiarów jest bardzo ważna, pozwala przewidywać straty wynikające z zastosowania przyrządów pomiarowych oraz określa źródła błędów, a tym samym możliwość sterowania ich wartością.

1.1 Błędy w procesie porcjowania Zadanie 2. Obliczyć straty poniesione w czasie konfekcjonowania złota Au próby 583 o wartości 100 zł/g, jeżeli porcjowano 100 g/dobę w odniesieniu do jednego pracownika, masa całkowita 100 kg/dobę. Pomiaru dokonywano wagę laboratoryjną o błędzie nieczułości  0,1mg i błędzie wzorcowania  m w =  0,001% odważnikami 100g klasy 0,01% Dane: waga  m ncw =  0,1mg =  0,0001 g  m w =  0,001% odważnik m = 100g, kl = 0,01%  m kl = 0,01 g Cena 1g złotac j = 100 zł/g Masa jednostkowam j = 100 g/dobę Masa całkowitam c = 100 kg/dobę = g/dobę

1.1 Błędy w procesie porcjowania Zadanie 2. Rozwiązanie. Błąd w pomiarze 100g złota: Błąd w konfekcjonowaniu 100kg złota/dobę Maksymalne straty w ciągu doby Maksymalne straty w ciągu roku (235 dni roboczych)

1.1 Błędy w procesie porcjowania Zadanie 2. Uwagi błędy te mogą się sumować z niekorzyścią dla konfekcjonującego, w czasie ważenia może pojawić się dodatkowy czynnik, antropotechniczny ( ludzki), polegający na ważeniu z pewną minimalną nadwyżką, co powiększa straty, w procesie ważenia błąd nieczułości jest zwykle dodatni, ponieważ ważenie polega na zwiększaniu ważonej masy, siły tarcia jest skierowana przeciwnie do kierunku ruchu, zważona masa jest większa od wzorcowej, sposób ważenia w momencie zbliżania się do oczekiwanej wartości jest powolny co powiększa błąd nieczułości (tarcie statyczne jest większe, od tarcia w czasie ruchu), występują błędy dodatkowe, zanieczyszczenie odważników (wzorcuje się odważniki czyste), zanieczyszczenie wagi, wycieranie się elementów stykających się itp.

1.2 Pomiary masy i wyznaczenie jej ceny Zadanie 1. Obliczyć wartość błędu względnego i bezwzględnego oraz zapisać wynik pomiaru masy i wyznaczenia jej ceny, jeżeli pomiaru dokonano wagą automatyczną (rys. 5.1), w której blok I (przetwornik, układ pomiarowy, wzmacniacz normalizujący sygnał) K I =10 kg/V,  K I = 0,01%, blok II (przetwornik A/C: 14 – bitowy) K II = 10-4 V/z,  K II = 0,01%,  K IId = 1z, jednostka arytmetyczna JA – 14 – bitowy system wprowadzania ceny jednostkowej towaru NC, 14-bitowy system wprowadzania ceny jednostkowej towaru, Cj = 10 5 zł/kg, cena jednostkowa Cj = zł/kg. Masa ważona wynosi 1,019 kg (zakres pomiaru masy Mz= 10 kg). m KIKI K II A/C K III JA Cena zł/kg POC zł POCj zł/kg POM masy Rys. 1.1 Schemat blokowy toru przetwarzania wagi

1.2 Pomiary masy i wyznaczenie jej ceny Zadanie 1. Dane  K I = 0,01%  K II = 0,01%  K IId =  dyA/C = + 5 z A/C: 14-bitowynA/C = 2 14 bitów = z JA – 14-bitowaN JAz = n JCjz = n JMz = 2 14 bitów = z N Mz = z(maksymalna liczba ziaren pola odczytowego masy) Mz = 15 kg(zakres pomiaru masy) M = 1,015 kg(mierzona masa) N Cjz = z(maksymalna liczba ziaren pola odczytowego ceny jednostkowej) Cj z = 100,00 zł / kg(zakres wprowadzenia ceny jednostkowej) Cj = 92 zł/kg(cena jednostkowa) N Cz = z(maksymalna liczba ziaren pola odczytowego) C z = 1000 zł(zakres ceny)

1.2 Pomiary masy i wyznaczenie jej ceny Zadanie 1. Rozwiązanie M = K I K II K POM m C = M C j = K I K II K POM m K Cj K JA K POC Błąd w wyznaczeniu ceny C Błąd w pomiarze masy  m – błąd jest związany ze zjawiskami zewnętrznymi wpływającymi na pomiar (nie wytarowana szalka, inne zjawiska, np. silne pola magnetyczne itp.).

1.2 Pomiary masy i wyznaczenie jej ceny Zadanie 1. Analiza dokładności zaokrąglenia błędów błąd w pomiarze masy powinien być mniejszy lub równy masie wyznaczonej przez połowę minimalnej jednostki płatniczej, Dyskretyzacja pomiaru masy:  Jeżeli dyskretyzacja odbywa się na poziomie zakłóceń (własne i zewnętrzne), to przyjęcie błędu dyskretyzacji  dy powoduje równomierny rozkład błędu.  Jeżeli dyskretyzacja odbywa się na poziomie co najmniej o rząd wyższy od poziomu sygnałów zakłócających, to konstruktor w sposób przemyślany określa wartość i znak błędu dyskretyzacji, które mogą być: a)  dyA/C = +  dy – jest to błąd systematyczny, oznacza, że  dyA/C = x – x r >0, x > x r – pomiar z nadmiarem, w przypadku wagi masy ważona może być większa od wskazanej przez wagę, b)  dyA/C = ± 0,5 ten błąd ma charakter przypadkowy, pomiar może być dokonany z nadmiarem i niedomiarem, c)  dyA/C = -  dy – jest to błąd systematyczny, oznacza, że  dyA/C = x – xr > 0, x < xr – pomiar z niedomiarem, co z kolei oznacza, że masa ważona jest w rzeczywistości mniejsza od wskazanej przez wagę.

Zadanie 1 W zadaniu  dyA/C = +  dyM = 5z = 0,005 kg, to znaczy, że zmiana na polu odczytowym o jedno ziarno nastąpi dopiero po zwiększeniu masy na szalce o 0,005kg – podpunkt a). Warunek pomiaru masy z większą dokładnością niż wynika to z minimalnej jednostki płatniczej niż jest spełniony. błąd bezwzględny  Mzaokr =  dyM =  dyA/C – 5z = 0,005 kg, błąd względny  Mzaokr =