Rok 2011 Rokiem Marii Sk ł odowskiej-Curie 3 grudnia 2010 r. Sejm Rzeczypospolitej Polskiej przyj ął uchwa łę w sprawie ustanowienia roku 2011 Rokiem.

Slides:



Advertisements
Podobne prezentacje
dla nauczycieli chemii Muzeum Marii Skłodowskiej-Curie
Advertisements

Maria Skłodowska - Curie
Rok 2011 Rokiem Marii Skłodowskiej-Curie
Maria Skłodowska-Curie
RAD i POLON.
Maria Skłodowska Curie
Maria Skłodowska -Curie
Życie i działalność naukowa Marii Skłodowskiej-Curie
Szkola im. Wł. Syrokomli. Klasa 9c Rajmonda Maleckiego 2015 r.
Sole w kuchni.
Rodzaje środków czystości
Równowaga chemiczna - odwracalność reakcji chemicznych
Maria Skłodowska-Curie Odkrywca Polonu i Radu Spis treści: Historia życia  Drzewo genealogiczne Drzewo genealogiczne  Dzieciństwo w Polsce Dzieciństwo.
Szulbe ®. 1.Rys historyczny a)1806 r. - J. Berzelius wprowadził nazwę „związki organiczne” dla wszystkich substancji występujących w organizmach roślinnych.
KWASY Justyna Loryś.
Litowce – sód -Ogólna charakterystyka litowców - Właściwości sodu - Ważniejsze związki sodu -Ogólna charakterystyka litowców - Właściwości sodu - Ważniejsze.
Zajęcia 1-3 Układ okresowy pierwiastków. Co to i po co? Pojęcie masy atomowej, masy cząsteczkowej, masy molowej Proste obliczenia stechiometryczne. Wydajność.
Chemia nieorganiczna Sole Nazwy i wzory soli. Kwasy przeciw zasadom.
Stężenia Określają wzajemne ilości substancji wymieszanych ze sobą. Gdy substancje tworzą jednolite fazy to nazywa się je roztworami (np. roztwór cukru.
Wielcy rewolucjoniści nauki
Składniki odżywcze i ich rola w organizmie Białka, cukry i tłuszcze
Spektroskopia Ramana dr Monika Kalinowska. Sir Chandrasekhara Venkata Raman ( ), profesor Uniwersytetu w Kalkucie, uzyskał nagrodę Nobla w 1930.
Przykłady i zastosowania soli
Borowce – glin ogólna charakterystyka borowców, występowanie glinu,
„ Kwaśna bateria” czyli jak działają akumulatory?.
Przemiany energii w ruchu harmonicznym. Rezonans mechaniczny Wyk. Agata Niezgoda Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Dlaczego boimy się promieniotwórczości?
Przemiana chemiczna to taka przemiana, w wyniku której z kilku (najczęściej dwóch) substancji powstaje jedna nowa lub dwie nowe substancje o odmiennych.
Blok I: PODSTAWY TECHNIKI
Główne etapy procedury administracyjnej związanej z uzyskaniem stopnia doktora nauk chemicznych Uzyskanie kompetencji merytorycznych wynikających realizacji.
Rok 2011 Rokiem Marii Skłodowskiej-Curie „W setną rocznicę przyznania Marii Skłodowskiej-Curie Nagrody Nobla w dziedzinie chemii za odkrycie nowych pierwiastków.
Wyższe kwasy karboksylowe i mydła
Otrzymywanie bezwodnika ftalowego w skali 1000 ton/ rok K. Kardas, O
Woda Cud natury.
MOTYWACJA. Słowo motywacja składa się z dwóch części: Motyw i Akcja. Aby podjąć działanie (akcję), trzeba mieć do tego odpowiednie motywy. Łaciński źródłosłów.
Reakcje charakterystyczne w chemii organicznej – identyfikacja związków i grup funkcyjnych -Grupy hydroksylowe, -Grupa aldehydowa, -Grupa ketonowa -Grupa.
” t rzeba mieć odwagę i głównie wiarę w siebie, i głównie wiarę w siebie, że się jest do czegoś zdolnym że się jest do czegoś zdolnym i że do tego czegoś.
Autorzy: Kamil Kawecki IIB Piotr Kornacki IIB Piotr Niewiadomski IIB.
Wodorotlenki.
Przygotowały: Laura Andrzejczak oraz Marta Petelenz- Łukasiewicz z klasy 2”D”
Nitrowanie glikolu dietylowego przy zwiększeniu ilości wody pozwala na oddzielenie mieszaniny poreakcyjnej od produktu, zwiększa wydajność i zmniejsza.
Alkohole polihydroksylowe
MARIA SKŁODOWSKA- CURIE PIERWSZA DAMA POLSKIEJ I ŚWIATOWEJ NAUKI.
Historia Znaleziska archeologiczne wskazują, że jedwab wytwarzano już w starożytnych Chinach od roku około 2700 lat p.n.e.Chinach Chińskie.
Jest pierwszą kobietą będącą profesorem Sorbony. Maria Skłodowska Curie udowodniła swoim życiem, że kobieta może osiągnąć ponadczasowy światowy sukces.
- nie ma własnego kształtu, wlana do naczynia przybiera jego kształt, - ma swoją objętość, którą trudno jest zmienić tzn. są mało ściśliwe (zamarzając.
Promieniotwórczość sztuczna. 1. Rys historyczny W 1919r. E. Rutherford dokonał pierwszego przekształcenia azotu w inny pierwiastek – tlen, jako pierwszy.
Jakub Fiećko, Tomasz Godlewski, Patryk Derlukiewicz, Wojciech Gomoła I.Wstęp Głównym zastosowaniem pochodnych bezwodnika ftalowego jest utwardzanie żywic.
ZMIANY ZWIĄZANE Z FORMUŁOWANIEM OCEN DLA UCZNIÓW Z NIEPEŁNOSPRAWNOŚCIĄ INTELEKTUALNĄ W STOPNIU UMIARKOWANYM I ZNACZNYM NA WSZYSTKICH ETAPACH EDUKACYJNYCH.
” t rzeba mieć odwagę i głównie wiarę w siebie, i głównie wiarę w siebie, że się jest do czegoś zdolnym że się jest do czegoś zdolnym i że do tego czegoś.
 Cynk w przyrodzie występuje wyłącznie w formie związanej w postaci minerałów: - ZnS – blenda cynkowa, - ZnCO 3 – smitsonit  Otrzymywanie metalicznego.
Wapń i jego związki występowanie i otrzymywanie
Życie i dokonania.. Maria Skłodowska-Curie ( ) Maria Skłodowska-Curie urodziła się w Warszawie, ale studiowała i pracowała we Francji. Była wybitnym.
Opracowanie: Pawe ł Zaborowski Konsultacja merytoryczna: Ma ł gorzata Lech.
Tlenki, nadtlenki, ponadtlenki
Własności elektryczne materii
-Występowanie i właściwości - Ważniejsze związki fosforu
"Chemia w matematyce" Zadania do samodzielne wykonania.
Fluorowce - chlor Ogólna charakterystyka fluorowców
Monika Hołowacz. Obecnie nie ma już wątpliwości, że palenie papierosów szkodliwie działa na zdrowie człowieka. Gdy pali dziecko, konsekwencje uzależnienia.
Dane o polskich palaczach: 9 milionów Polaków to nałogowi palacze. 57 proc. palaczy to mężczyźni. 54 proc. palaczy wypala papierosów dziennie.
Jak zapisać przebieg reakcji chemicznej?
Co to są tlenki? budowa tlenków, otrzymywanie tlenków,
Życie i działalność naukowa
Największe i najmniejsze (cz. I)
Mangan i jego związki Występowanie i otrzymywanie manganu,
Maria Skłodowska-Curie.
Dlaczego masa atomowa pierwiastka ma wartość ułamkową?
Zapis prezentacji:

Rok 2011 Rokiem Marii Sk ł odowskiej-Curie 3 grudnia 2010 r. Sejm Rzeczypospolitej Polskiej przyj ął uchwa łę w sprawie ustanowienia roku 2011 Rokiem Marii Sk ł odowskiej-Curie

Dorobek naukowy Do jej największych dokonań należą: opracowanie teorii promieniotwórczości, technik rozdzielania izotopów promieniotwórczych oraz odkrycie dwóch nowych pierwiastków: radu i polonu. Pod jej osobistym kierunkiem prowadzono też pierwsze w świecie badania nad leczeniem raka za pomocą promieniotwórczości. Była prekursorem nowej gałęzi chemii - radiochemii. Do jej największych dokonań należą: opracowanie teorii promieniotwórczości, technik rozdzielania izotopów promieniotwórczych oraz odkrycie dwóch nowych pierwiastków: radu i polonu. Pod jej osobistym kierunkiem prowadzono też pierwsze w świecie badania nad leczeniem raka za pomocą promieniotwórczości. Była prekursorem nowej gałęzi chemii - radiochemii.

Dorobek naukowy Dwukrotnie wyróżniona Nagrodą Nobla za osiągnięcia naukowe. Po raz pierwszy w roku 1903 z fizyki wraz z mężem Piotrem Curie za badania nad odkrytym przez Antoine Henri Becquerela zjawiskiem promieniotwórczości. Drugi raz w roku 1911 z chemii za wydzielenie czystego radu. Do dziś ( początek 2011r) pozostaje jedyną kobietą, która tę nagrodę otrzymała dwukrotnie Dwukrotnie wyróżniona Nagrodą Nobla za osiągnięcia naukowe. Po raz pierwszy w roku 1903 z fizyki wraz z mężem Piotrem Curie za badania nad odkrytym przez Antoine Henri Becquerela zjawiskiem promieniotwórczości. Drugi raz w roku 1911 z chemii za wydzielenie czystego radu. Do dziś ( początek 2011r) pozostaje jedyną kobietą, która tę nagrodę otrzymała dwukrotnie

Dorobek naukowy Po otrzymaniu nagrody Nobla Maria i Pierre stali się nagle bardzo sławni. Pierrowi władze Sorbony przyznały stanowisko profesora i zezwoliły na założenie własnego laboratorium, w którym Maria została kierownikiem badań. Po śmierci męża, 13 maja 1906r. Rada Wydziałowa Sorbony postanowiła utrzymać katedrę, stworzoną dla Pierra Curie, i powierzyła ją Marii wraz z pełnią władzy nad laboratorium. Umożliwiło to wyjście Marii z cienia. Stała się w ten sposób pierwszą kobietą - profesorem Sorbony. Parę lat później, w 1911, tylko dwóch głosów zabrakło jej do tego, aby stała się jednym z czterdziestu członków Académie française. Według niektórych ocen zadziałały tu w znacznej mierze ataki prasy, w gwałtowny sposób przejawiającej nieufność wobec rzadkiego jeszcze wówczas zjawiska, jakim była kobieta-naukowiec, a także ksenofobiczną postawę wobec cudzoziemców. Po otrzymaniu nagrody Nobla Maria i Pierre stali się nagle bardzo sławni. Pierrowi władze Sorbony przyznały stanowisko profesora i zezwoliły na założenie własnego laboratorium, w którym Maria została kierownikiem badań. Po śmierci męża, 13 maja 1906r. Rada Wydziałowa Sorbony postanowiła utrzymać katedrę, stworzoną dla Pierra Curie, i powierzyła ją Marii wraz z pełnią władzy nad laboratorium. Umożliwiło to wyjście Marii z cienia. Stała się w ten sposób pierwszą kobietą - profesorem Sorbony. Parę lat później, w 1911, tylko dwóch głosów zabrakło jej do tego, aby stała się jednym z czterdziestu członków Académie française. Według niektórych ocen zadziałały tu w znacznej mierze ataki prasy, w gwałtowny sposób przejawiającej nieufność wobec rzadkiego jeszcze wówczas zjawiska, jakim była kobieta-naukowiec, a także ksenofobiczną postawę wobec cudzoziemców.

Dorobek naukowy Maria Skłodowska-Curie jako jedyna kobieta uczestniczyła w Konferencjach Solvayowskich – dorocznych spotkaniach najwybitniejszych uczonych.

Badania prowadzące do odkrycia radu i polonu Po odkryciu zjawiska promieniotwórczości przez Antoine Henri Becquerela, M. Curie-Skłodowska przebadała minerały oraz związki chemiczne zawierające uran. Badania wykazały, że radioaktywność jest uzależniona od zawartości uranu w badanych próbkach a ponadto, że radioaktywność wykazują związki toru oraz stwierdziła, że zdolność promieniowania jest cechą atomów. Dalsze badania wykazały, że dwie rudy: blenda uranowa U 3 O 8 i chalkolit Cu(UO 2 ) 2 (PO 4 ) 2. nH 2 O okazały się znacznie bardziej aktywne niż sam uran. Dało to podstawy do przypuszczeń, że minerały te mogą zawierać pierwiastek lub pierwiastki znacznie bardziej aktywne od uranu Po odkryciu zjawiska promieniotwórczości przez Antoine Henri Becquerela, M. Curie-Skłodowska przebadała minerały oraz związki chemiczne zawierające uran. Badania wykazały, że radioaktywność jest uzależniona od zawartości uranu w badanych próbkach a ponadto, że radioaktywność wykazują związki toru oraz stwierdziła, że zdolność promieniowania jest cechą atomów. Dalsze badania wykazały, że dwie rudy: blenda uranowa U 3 O 8 i chalkolit Cu(UO 2 ) 2 (PO 4 ) 2. nH 2 O okazały się znacznie bardziej aktywne niż sam uran. Dało to podstawy do przypuszczeń, że minerały te mogą zawierać pierwiastek lub pierwiastki znacznie bardziej aktywne od uranu

Badania prowadzące do odkrycia polonu i radu Chalkolit Blenda uranowa

Badania prowadzące do odkrycia polonu i radu cd Blenda uranowa, zwana smółką uranową, pechblendą albo blendą smolistą to odmiana uranitu, którego głównym składnikiem jest tlenek uranu U 3 O 8 – (UO 3 ) 2. UO 2. W odróżnieniu od uranitu, blenda uranowa jest odmianą zbitą, pozbawioną struktury krystalicznej. Blenda uranowa promieniuje czterokrotnie silniej niż czysty uran. Obecnie minerał ten stanowi najważniejsze źródło uranu, radu i innych pierwiastków promieniotwórczych. Zawartość polonu i radu w blendzie uranowej (w zależności od jej pochodzenia) jest niewielka i wynosi około 0,1 mg polonu oraz 1,4 g radu na 1 tonę. Oba pierwiastki stanowią ogniwa szeregu uranowo- radowego. Najważniejszym izotopem polonu, zawartym w rudach uranu, jest 210 Po o t 1/2 =138,4 dni, a radu izotop 226 Ra o okresie półrozpadu t 1/2 =1620 lat Blenda uranowa, zwana smółką uranową, pechblendą albo blendą smolistą to odmiana uranitu, którego głównym składnikiem jest tlenek uranu U 3 O 8 – (UO 3 ) 2. UO 2. W odróżnieniu od uranitu, blenda uranowa jest odmianą zbitą, pozbawioną struktury krystalicznej. Blenda uranowa promieniuje czterokrotnie silniej niż czysty uran. Obecnie minerał ten stanowi najważniejsze źródło uranu, radu i innych pierwiastków promieniotwórczych. Zawartość polonu i radu w blendzie uranowej (w zależności od jej pochodzenia) jest niewielka i wynosi około 0,1 mg polonu oraz 1,4 g radu na 1 tonę. Oba pierwiastki stanowią ogniwa szeregu uranowo- radowego. Najważniejszym izotopem polonu, zawartym w rudach uranu, jest 210 Po o t 1/2 =138,4 dni, a radu izotop 226 Ra o okresie półrozpadu t 1/2 =1620 lat

Badania prowadzące do odkrycia polonu cd Wszystkie frakcje zawierały radioaktywny pierwiastek X, na każdym etapie wydzielano kolejne pierwiastki zawarte w blendzie uranowej, końcowym produktem był siarczek pierwiastka X. Wszystkie frakcje zawierały radioaktywny pierwiastek X, na każdym etapie wydzielano kolejne pierwiastki zawarte w blendzie uranowej, końcowym produktem był siarczek pierwiastka X. Blenda uranowa + HCl (aq ) Roztwór chlorków: U, Th, Pb, Cu, As, Sb, Bi, X + H 2 S (aq) Wytrącenie z roztworu siarczków: Pb, Cu, As, Sb, Bi, X + (NH 4 ) 2 S Przejście As i Sb do roztworu, pozostał osad Pb, Cu, Bi, X+ NH 3(aq) + HCl (aq) Przejście Cu do roztworu, osad wodorotlenków Pb, Bi, X + HCl (aq) + H 2 S (aq) Osad: siarczków Pb, Bi, X (sublimacja w temp. 700 o C) Siarczek XS = siarczek polonu PoS

Badania prowadzące do odkrycia polonu cd Otrzymana przez małżonków Curie mieszanina siarczków wykazywała radioaktywność 400-krotnie silniejszą niż uran. To potwierdzało, że w produkcie wyodrębnionym z blendy uranowej, zawierającym siarczek bizmutu, znajdował się przepowiedziany wcześniej pierwiastek. 18 lipca 1898 r. małżonkowie Curie poinformowali Akademię Nauk w Paryżu o odkryciu nowego pierwiastka – „ Jeśli istnienie tego metalu potwierdzi się, proponujemy dla niego nazwę „polon”- od nazwy ojczyzny jednego z nas […] ”

Właściwości polonu Wolny polon wydzielił w 1902 r. Willy Marckwald przez zanurzenie czystego bizmutu do roztworu otrzymanego przez roztworzenie bizmutu uzyskanego z odpadów po przerobie blendy uranowej w HCl. Bizmut jest aktywniejszy od polonu i wypiera go z soli – na bizmucie osadza się promieniotwórczy osad. Inna metoda polegała na redukcji soli polonu chlorkiem cyny(II).

Właściwości polonu Dane fizykochemiczne: Polon pierwiastkiem 16 grupy układu okresowego (tlenowiec). Liczba atomowa 84, liczba masowa najtrwalszego izotopu 209. Temperatura topnienia: 254°C. Temperatura wrzenia 962°C. Gęstość: 9,14 g/cm 3 Właściwości: Polon to szarobiały, promieniotwórczy metal. Znanych jest 27 izotopów polonu, najtrwalszy to 209 Po o t 1/2 = 102 lata. Polon występuje w dwóch odmianach alotropowych α i β. Pod względem występowania w wierzchniej warstwie skorupy ziemskiej (litosferze, hydrosferze i atmosferze) polon zajmuje ok. 86 miejsce (procenty masowe). Polon otrzymuje się obecnie, w ilościach miligramowych, w wyniku naświetlania bizmutu neutronami: 209 Bi(n,γ) 210 Bi→(β - 5dni) 210 Po Izotop 210 Po ulega dalszemu rozpadowi α z okresem półtrwania T 1/2 = 138,4 dni. Dane fizykochemiczne: Polon pierwiastkiem 16 grupy układu okresowego (tlenowiec). Liczba atomowa 84, liczba masowa najtrwalszego izotopu 209. Temperatura topnienia: 254°C. Temperatura wrzenia 962°C. Gęstość: 9,14 g/cm 3 Właściwości: Polon to szarobiały, promieniotwórczy metal. Znanych jest 27 izotopów polonu, najtrwalszy to 209 Po o t 1/2 = 102 lata. Polon występuje w dwóch odmianach alotropowych α i β. Pod względem występowania w wierzchniej warstwie skorupy ziemskiej (litosferze, hydrosferze i atmosferze) polon zajmuje ok. 86 miejsce (procenty masowe). Polon otrzymuje się obecnie, w ilościach miligramowych, w wyniku naświetlania bizmutu neutronami: 209 Bi(n,γ) 210 Bi→(β - 5dni) 210 Po Izotop 210 Po ulega dalszemu rozpadowi α z okresem półtrwania T 1/2 = 138,4 dni.

Własności chemiczne polonu Polon w związkach chemicznych przyjmuje stopnie utlenienia: - II, II, IV (najtrwalsze połączenia) i VI. Do najważniejszych związków polonu(II) należą: H 2 Po, PoCl 2 i PoO. Za najważniejsze związki polonu(IV) uznaje się: żółty PoO 2, różowy PoCl 4, czerwony PoBr 4, czarny PoI 4 oraz PoS i Po(OH) 4. Polon tworzy z metalami polonki, np. PbPo. Metaliczny polon reaguje z rozcieńczonymi kwasami, ulega też działaniu fluoru. Polon leży w układzie okresowym tuż pod tellurem i sąsiaduje z bizmutem w tym samym 6 okresie. Nic więc dziwnego, że pod pewnymi względami podobny jest do telluru, pod innymi do bizmutu. Wodorotlenek polonu(IV) jest zbliżony właściwościami do Bi(OH) 3, a siarczek polonu(II) PoS bardziej przypomina Bi 2 S 3. Polon w związkach chemicznych przyjmuje stopnie utlenienia: - II, II, IV (najtrwalsze połączenia) i VI. Do najważniejszych związków polonu(II) należą: H 2 Po, PoCl 2 i PoO. Za najważniejsze związki polonu(IV) uznaje się: żółty PoO 2, różowy PoCl 4, czerwony PoBr 4, czarny PoI 4 oraz PoS i Po(OH) 4. Polon tworzy z metalami polonki, np. PbPo. Metaliczny polon reaguje z rozcieńczonymi kwasami, ulega też działaniu fluoru. Polon leży w układzie okresowym tuż pod tellurem i sąsiaduje z bizmutem w tym samym 6 okresie. Nic więc dziwnego, że pod pewnymi względami podobny jest do telluru, pod innymi do bizmutu. Wodorotlenek polonu(IV) jest zbliżony właściwościami do Bi(OH) 3, a siarczek polonu(II) PoS bardziej przypomina Bi 2 S 3.

Badania prowadzące do odkrycia radu Małżonkowie Curie przypuszczali, że polon nie jest jedynym źródłem silnego promieniowania blendy uranowej. Korzystając z pomocy chemika Gustwa`a Bémont`a kontynuują prace nad rozdzielaniem składników minerału. W 1899 r. po przerobieniu kilkuset kilogramów odpadów pouranowych, otrzymali 2 kg radonośnego chlorku baru, który był około 60 razy aktywniejszy od uranu. Preparat ten był oczyszczany dalej metodą krystalizacji frakcjonowanej. Małżonkowie Curie przypuszczali, że polon nie jest jedynym źródłem silnego promieniowania blendy uranowej. Korzystając z pomocy chemika Gustwa`a Bémont`a kontynuują prace nad rozdzielaniem składników minerału. W 1899 r. po przerobieniu kilkuset kilogramów odpadów pouranowych, otrzymali 2 kg radonośnego chlorku baru, który był około 60 razy aktywniejszy od uranu. Preparat ten był oczyszczany dalej metodą krystalizacji frakcjonowanej.

Badania prowadzące do odkrycia radu cd Blenda uranowa + Na 2 CO 3 + H 2 SO 4 Osady siarczanów(VI) i węglanów(IV) Po, Ba, X + HCl (aq) Roztwór chlorków polonu(II) i (IV) + H 2 S (aq) Osady siarczanów(VI) Ba i X + Na 2 CO 3 (w temp. wrzenia) Osad siarczku polonu(II) PoS Osad węglanów(IV) Ba i X + HCl (aq) Roztwór chlorków Ba i X (krystalizacja frakcjonowana) Roztwór BaCl 2 Osad XCl 2 = RaCl 2

Właściwości radu Dane fizykochemiczne: Rad to promieniotwórczy pierwiastek 2 grupy układu okresowego (berylowiec). Liczba atomowa 88, liczba masowa najtrwalszego izotopu 226 Temperatura topnienia: 700°C. Temperatura wrzenia 1700°C. Gęstość: 5,50 g/cm 3 Właściwości i otrzymywanie: Rad to srebrzysto-biały metal. Znanych jest 27 izotopów tego pierwiastka. Najtrwalszy z nich to izotop 226 Ra ma okres półrozpadu t 1/2 =1620 lat. Metaliczny rad otrzymuje się obecnie przez elektrolizę stopionego bromku radu. 85% zasobów radu stosuje się do celów leczniczych (w formie chlorku lub bromku), reszta wykorzystywana jest w nauce (np. w źródłach radowo- berylowych). Dane fizykochemiczne: Rad to promieniotwórczy pierwiastek 2 grupy układu okresowego (berylowiec). Liczba atomowa 88, liczba masowa najtrwalszego izotopu 226 Temperatura topnienia: 700°C. Temperatura wrzenia 1700°C. Gęstość: 5,50 g/cm 3 Właściwości i otrzymywanie: Rad to srebrzysto-biały metal. Znanych jest 27 izotopów tego pierwiastka. Najtrwalszy z nich to izotop 226 Ra ma okres półrozpadu t 1/2 =1620 lat. Metaliczny rad otrzymuje się obecnie przez elektrolizę stopionego bromku radu. 85% zasobów radu stosuje się do celów leczniczych (w formie chlorku lub bromku), reszta wykorzystywana jest w nauce (np. w źródłach radowo- berylowych).

Własności chemiczne radu Rad przyjmuje, w związkach chemicznych stopień utlenienia II. Jest pierwiastkiem bardzo aktywnym chemicznie. Łatwo reaguje z: wodą, tlenem, fluorem, chlorem, bromem i z rozcieńczonymi kwasami. Do najważniejszych związków chemicznych radu należą: dobrze rozpuszczalny w wodzie wodorotlenek Ra(OH) 2 - mocna zasada, tlenek radu RaO; rozpuszczalne w wodzie halogenki RaCl 2, RaBr 2, trudno rozpuszczalny w wodzie węglan RaCO 3 i siarczan(VI) RaSO 4. Związki chemiczne radu swoimi właściwościami przypominają odpowiednie związki baru. Kation radu jest bezbarwny. Sole radu (podobnie jak sole strontu) barwią płomień palnika gazowego na karminowo. Rad przyjmuje, w związkach chemicznych stopień utlenienia II. Jest pierwiastkiem bardzo aktywnym chemicznie. Łatwo reaguje z: wodą, tlenem, fluorem, chlorem, bromem i z rozcieńczonymi kwasami. Do najważniejszych związków chemicznych radu należą: dobrze rozpuszczalny w wodzie wodorotlenek Ra(OH) 2 - mocna zasada, tlenek radu RaO; rozpuszczalne w wodzie halogenki RaCl 2, RaBr 2, trudno rozpuszczalny w wodzie węglan RaCO 3 i siarczan(VI) RaSO 4. Związki chemiczne radu swoimi właściwościami przypominają odpowiednie związki baru. Kation radu jest bezbarwny. Sole radu (podobnie jak sole strontu) barwią płomień palnika gazowego na karminowo.

Materiały źródłowe UCHWAŁA Sejmu Rzeczypospolitej Polskiejz dnia 3 grudnia 2010 r. w sprawie ustanowienia roku 2011 Rokiem Marii Skłodowskiej-Curie, Materiały internetowe Muzeum M. Skłodowskiej-Curie w Warszawie, Prezentacja –mgr Krzysztof Kuśmierczyk doradca metodyczny ds. chemii m.st. Warszawy - „W jaki sposób Maria Skłodowska-Curie wydzieliła polon i rad z blendy uranowej?” Przygotował: S. Jankowski