Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Rozpoznawanie brył przestrzennych
2
GRANIASTOSŁUP GRANIASTOSŁUP JEST TO BRYŁA, KTÓRA MA:
DWIE PODSTAWY (DOWOLNE PRZYSTAJĄCE WIELOKĄTY) ZAWARTE W RÓWNOLEGŁYCH PŁASZCZYZNACH ŚCIANY BOCZNE, KTÓRE SĄ RÓWNOLEGŁOBOKAMI.
3
GRANIASTOSŁUP PROSTY GRANIASTOSŁUP PROSTY JEST TO GRANIASTOSŁUP W KTÓRYM: KAŻDA KRAWĘDŹ BOCZNA JEST PROSTOPADŁA DO PŁASZCZYZNY PODSTAWY KAŻDA KRAWĘDŹ BOCZNA JEST WYSOKOŚCIĄ KAŻDA ŚCIANA BOCZNA JEST PROSTOKĄTEM.
4
Przykłady graniastosłupów prostych
5
Graniastosłup prawidłowy
Jest to graniastosłup prosty, którego podstawą jest wielokąt foremny
6
Prostopadłościan Jest to graniastosłup prosty, którego podstawami są prostokąty
7
Sześcian To taki prostopadłościan, którego każda ściana jest kwadratem
8
Doskonale znamy piramidy egipskie.
Mają one kształt figur, które nazywamy ostrosłupami.
9
OSTROSŁUP OSTROSŁUP JEST TO WIELOŚCIAN, KTÓRY MA:
JEDNĄ PODSTAWĘ, KTÓRA JEST DOWOLNYM WIELOKĄTEM ŚCIANY BOCZNE, KTÓRE SĄ TRÓJKĄTAMI MAJĄCYMI WSPÓLNY WIERZCHOŁEK, KTÓRY NAZYWAMY WIERZCHOŁKIEM OSTROSŁUPA.
10
Ostrosłup, którego wszystkie krawędzie są równej długości, nazywamy czworościanem foremnym.
11
Ostrosłup nazywamy prawidłowym, jeżeli jego podstawa jest wielokątem foremnym, a ściany boczne są trójkątami równoramiennymi.
12
Przykłady ostrosłupów
SZEŚCIOKĄTNY OSTROSŁUP PIĘCIOKĄTNY OSTROSŁUP TRÓJKĄTNY OSTROSŁUP SIEDMIOKĄTNY OSTROSŁUP CZWOROKĄTNY
13
Przykładowe siatki ostrosłupów
Ostrosłup czworokątny Ostrosłup sześciokątny Ostrosłup trójkątny
14
Konstrukcja walca. Walec jest bryłą geometryczną powstałą w wyniku obrotu prostokąta wokół jednego z jego boków. Podstawą walca jest koło.
15
oś obrotu wysokość WALEC spodek wysokości r promień podstawy S
16
OPIS WALCA r - promień podstawy H H - wysokość walca r oś obrotu
17
Budowa Waleca. WALEC SKŁADA SIĘ Z:
DWÓCH PODSTAW, KTÓRE SĄ PRZYSTAJĄCYMI KOŁAMI ZAWARTYMI W RÓWNOLEGŁYCH PŁASZCZYZNACH Z POWIERZCHNI BOCZNEJ, KTÓRA PO ROZWINIĘCIU NA PŁASZCZYŹNIE JEST PROSTOKĄTEM
18
SIATKA WALCA
19
PRZEKROJE WALCA
20
PRZEKROJE WALCA
21
Przykłady walców.
22
Stożek Stożek to bryła wypukła która powstaje przez obrót trójkąta prostokątnego wokół prostej zawierającej jedną z przyprostokątnych. Podstawą stożka jest koło o promieniu r.
23
STOŻEK PODSTAWY KTÓRA JEST KOŁEM
STOŻEK SKŁADA SIĘ Z: PODSTAWY KTÓRA JEST KOŁEM POWIERZCHNI BOCZNEJ, KTÓRA PO ROZWINIĘCIU NA PŁASZCZYŹNIE JEST WYCINKIEM KOŁA.
24
STOŻEK α oś obrotu oś obrotu kąt rozwarcia stożka wysokość tworząca promień podstawy H spodek wysokości podstawa r S Stożkiem nazywamy bryłę obrotową powstałą przez obrót trójkąta prostokątnego dookoła prostej zawierającej jedną z przyprostokątnych.
25
OPIS STOŻKA H r l H l S - wysokość stożka - promień podstawy S
- wierzchołek stożka - spodek wysokości O r O l - tworząca stożka
26
PRZEKROJE STOŻKA Przekrojom osiowym stożka jest trójkąt równoramienny.
27
PRZEKROJE STOŻKA Przekrojem poprzecznym stożka jest koło lub punkt.
28
Siatka stożka.
29
Stożek Przykłady innych stożków.
30
Kula. Przykładem kuli jest kula do bilarda lub pomarańcza.
31
KULA r Kula jest bryłą obrotową powstałą przez obrót koła lub półkola dookoła prostej, w której zawarta jest jego średnica.
32
KULA
33
Kula r - promień kuli d -średnica kuli O – środek kuli
34
Związane pojęcia Cięciwa kuli to odcinek o końcach na brzegu kuli.
Średnica kuli to cięciwa przechodząca przez środek kuli. Termin ten oznacza również długość tej cięciwy – równą podwojonej długości promienia kuli.
35
OPIS KULI S r - środek kuli r koło wielkie kuli S - promień kuli
oś obrotu
36
Każdy niepusty przekrój kuli jest kołem lub punktem.
PRZEKROJE KULI Każdy niepusty przekrój kuli jest kołem lub punktem.
37
PRZEKRÓJ OSIOWY KULI Przekrój osiowy kuli nazywamy kołem wielkim.
38
Powierzchnią kuli jest sfera.
POWIERZCHNIA KULI Powierzchnią kuli jest sfera.
39
Sfera Jest to część przestrzeni składająca się z punktów oddalonych o pewną odległość zwaną promieniem sfery .Można powiedzieć że sfera jest brzegiem kuli. Przykładem sfery jest piłka do siatkówki lub piłeczka do ping - ponga.
40
KONIEC
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.