Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałRoksana Lindner Został zmieniony 10 lat temu
2
Nazwa szkoły: Gimnazjum nr 58 im. Jana Nowaka Jeziorańskiego w Poznaniu ID grupy: 98/62_MF_G2 Opiekun Aneta Waszkowiak Kompetencja: matematyczno- fizyczna Temat projektowy: W świecie miary Semestr/rok szkolny: semestr 4 ; 2011/2012
3
POMIARY Podczas wykonywania doświadczeń z fizyki dokonujemy pomiarów różnych wielkości fizycznych np. masy, długości, czasu, objętości itd. POMIAR – polega na porównaniu dowolnej wielkości fizycznej z wielkością tego samego rodzaju, przyjętą za jednostkę miary. W 1960 r. uchwalono Międzynarodowy Układ Jednostek (SI), który w Polsce jest on obowiązujący od 1966r.
4
Jednostki podstawowe SI
Wielkość fizyczna Symbol wielkość fizycznej Jednostka Symbol jednostki Czas t sekunda s Długość, droga l, s metr m Natężenie I amper A Temperatura T kelwiny K Ilość materii n mol światłość masa l kandela kilogram cd kg
5
Jednostki pochodne Jednostkami pochodnymi nazywamy wszystkie pozostałe jednostki wielkości fizycznych, zarówno te posiadające własne nazwy jak np. wat (W) czy dioptria (D), niuton (N) jak i te, które ich nie posiadają i są wyrażane za pomocą jednostek podstawowych, np. przyspieszenie nie posiada swojej nazwy jednostki i wyrażane jest za pomocą
6
Przedrostki jednostek
MNOŻNIK PRZEDROSTEK SYMBOL mega M 1000 kilo k 100 hekto h 10 deka da 0,1 decy d 0,01 centy c 0,001 mili m 0,000001 mikro μ
7
PRZELICZNIE JEDNOSTEK- nasze obliczenia
8
Jednostki masy Zadanie 1. 5 ton - ile to kilogramów, dekagramów i gramów? 1t = 100kg 1kg = 100dag 1dag = 10g 5t * 1000kg = 5000kg 5000kg * 100dag = dag 500000dag * 10g = g zatem Odp. 5 ton to 5000kg, dag i g. Zadanie g – ile to dekagramów, kilogramów i ton? 200g * 0,1dag = 20dag 20dag * 0,01kg = 0,2kg 0,2kg * 0,001t = 0,0002t 1g = 0,1dag 1dag= 0,01kg 1kg = 0,001t 200g * 0,1dag = 20dag 20dag * 0,01kg = 0,2kg 0,2kg * 0,001t = 0,0002t zatem Odp. 200g to 20 dag, 0,2 kg i 0,0002t.
9
Jednostki długości Zadanie kilometrów - ile to centymetrów, decymetrów, centymetrów i milimetrów? 1 cm = 10 mm, 1 dm = 10 cm, 1 m = 100 cm 1 km = 1000 m 40km * 1000m = 40000m 40000m * 100cm = cm cm : 10cm = dm cm * 10mm = mm zatem Odp. 40 kilometrów jest równe 40000m, cm, dm i mm. Zadanie 4. 3milimetry – ile to centymetrów, decymetrów i kilometrów? 3mm * 0,1cm = 0,3 cm 0,3cm * 0,1dm = 0,03dm 0,3cm * 0,01m = 0,003m 0,003m * 0,001km = 0,000003km 1mm = 0,1cm 1cm = 0,01m 1cm = 0,1dm 1m = 0,001km 3mm * 0,1cm = 0,3 cm 0,3cm * 0,1dm = 0,03dm 0,3cm * 0,01m = 0,003m 0,003m * 0,001km = 0,000003km zatem Odp. 3 milimetry są równe 0,3cm; 0,03dm; 0,003m i 0,000003km.
10
Jednostki powierzchni
x2 = x * x Zadanie 5. 1 hektar - ile to arów, km2, m2, dm2 , cm2 i mm2 ? 1 cm = 10 mm, 1 dm = 10 cm, 1 m = 100 cm 1 km = 1000 m 1a = 10 m * 10m 1ha = 100a 1ha = 100a 100a = 100 * (10m)2 = 100 * 10m * 10m = 10000m2 10000m2 = : 1000m : 1000m = 0,01km2 10000m2 = * 100cm * 100cm = cm2 cm2 = : 10cm : 10cm = dm2 cm2 = * 10mm * 10mm = mm2
11
Jednostki objętości x3 = x * x * x
Zadanie 6. 7 litrów - ile to ml, km3, m3, dm3 , cm3 i mm3 ? 1l = 1000 ml 1l = 1 dm3 1 cm = 10 mm, 1 dm = 10 cm, 1 m = 100 cm 1 km = 1000 m 7l = 7 * 1000ml = 7000ml 7l = 7 * 1dm3 = 7dm3 7dm3 = 7 * 10cm * 10cm * 10cm = 7000cm3 7000cm3 = 7000 * 10mm * 10mm * 10mm = mm3 7000cm3 = 7000 : 100m : 100m : 100m = 0,007m3 0,007m3 = 0,007 : 1000 : 1000 : 1000 = 0, km3 7l = 7 * 1000ml = 7000ml 7l = 7 * 1dm3 = 7dm3 7dm3 = 7 * 10cm * 10cm * 10cm = 7000cm3 7000cm3 = 7000 * 10mm * 10mm * 10mm = mm3 7000cm3 = 7000 : 100m : 100m : 100m = 0,007m3 0,007m3 = 0,007 : 1000 : 1000 : 1000 = 0, km3
12
Jednostki czasu Zadanie 7. Ile sekund mieści się w tygodniu?
1 doba = 24h 1h = 60 min 1min = 60s 7 *24h = 168h 168h * 60min = 10080min 10080min * 60s = s Odp. W tygodniu mieści się s . 24h * 60 min = 1440 min 1440min * 60s = 86400s
13
Jednostki gęstości Zadanie 8. Zamień 8g/cm3 na kg/m3
14
Zad. 1 Jeśli gęstość srebra wnosi 10,49 kg/dm3, to oblicz ile będzie ważył 1m3 tego kruszcu? Odpowiedź podaj w kg . SZUKANE: m=? DANE: p – 10,49 kg/dm3 ROZWIĄZANIE: 1m3 = 10 dm · 10 dm · 10 dm =1000 dm3 10,49 kg/dm3 · 1000 dm3 = kg Odp. 1 m3 srebra ma masę kg
15
Jakie wymiary ma sześcienny blok srebra (10,49 g/cm3) o wadze 1 tony?
Zad. 2 Jakie wymiary ma sześcienny blok srebra (10,49 g/cm3) o wadze 1 tony? SZUKANE: a – bok sześcianu WZÓR: a = 3 m/ρ DANE: ρ – 10,49 g/cm3 ROZWIĄZANIE: 1 T = g a = g : 10,49 g/cm3 = ,88 cm 3 Odp. Blok złota ma 95328,88 cm3
16
Zad. 3 Jaką masę ma 1dm3 stopu złota ( 19.3 g/cm3 ) i platyny ( 21.4 g/cm3 ), jeśli proporcje składników wynoszą złoto 80%, a platyna 20% ? SZUKANE: m = ? DANE: p złota 19.3 g/cm3 p platyny 21.4 g/cm3 złoto 80% Platyna 20% ROZWIĄZANIE: 1dm3 = 10 cm x 10 cm x 10 cm =1000 cm3 1000 cm3 x 0.8 = 800 cm3 1000 cm3 x 0.2 = 200 cm3 800 cm3 x 19.3 g/cm3 = g = kg 200 cm3 x 21.4 g/cm3 = 4280 g = 4.28 kg Odp. 1 dm3 stopu ma masę kg . 15.44 + 4.28 19.72
17
Niepewność pomiarowa Nie ma pomiarów idealnych. Każdy pomiar obarczany jest jakąś niepewnością pomiarową.
18
Źródła niepewności Niepełna definicja wielkości mierzonej.
Niedoskonała realizacja definicji wielkości mierzonej. Niepełna znajomość wpływu otoczenia lub niedoskonały pomiar warunków otoczenia. Błędy w odczycie wskazań przyrządów. Klasa dokładności przyrządów pomiarowych. Niedokładne wartości danych otrzymywanych ze źródeł zewnętrznych: wartości przypisane wzorcom i materiałom odniesienia, stałe przyjmowane do obliczeń. Niedoskonałość metody pomiarowej.
19
Przykładowe niepewności pomiarowe
0,1kg 0,1cm 0,01s
20
Zakres pomiarowy Zakres pomiarowy przyrządu określamy, podając najmniejszą i największą wartość na skali czyli przedział wartości, które możemy mierzyć za pomocą danego przyrządu.
21
By uzyskać wynik najbliższy rzeczywistemu wymiarowi, należy pomiar wykonać kilka razy, wyniki dodać, a następnie podzielić przez liczbę pomiarów. Tym sposobem otrzymamy średnią arytmetyczną mierzonej wielkości.
22
Zaokrąglanie Zaokrąglanie – w matematyce przybliżanie pewnej liczby do innej, mającej mniej cyfr znaczących.
23
Metody zaokrąglania do liczby całkowitej
zaokrąglanie do najbliższej wartości zaokrąglanie w stronę zera zaokrąglanie w dół zaokrąglanie w górę zaokrąglanie w kierunku od zera r do najbliższej wartości w stronę zera w dół w górę w kierunku od zera +23,67 +24 +23 +23,35 −23,35 −23 −24 −23,67
24
Jak obliczyć opór i niepewność pomiarową oporu?
Wykonane przez nas zdjęcia układu pomiarowego
25
Zdjęcia z pomiarów oporu
26
Niepewność pomiaru napięcia 0,1 A
Niepewność pomiaru prądu 0,01V Opór obliczamy ze wzoru: Tabelka wykonanych pomiarów i obliczeń oporu opornika Napięcie (V) Natężenie (A) Opór (Ω) 19 0,09 211,(1) 12,8 0,06 213,(3) 22,2 0,11 201,(81)
27
Obliczamy niepewność oporu
U=19V I=0,09A Umax =19V+0,1V=19,1V Umin = 19V-0,1V=18,9V Imax =0,09A+0,01A=0,1A Imin =0,09A-0,01A=0,08A Rmax =19,1V:0,08A=238,75Ω Rmin = 18,9:0,1A=189Ω 238,75 Ω-211,1 Ω=27,65 Ω 211,1 Ω-189 Ω=22,1 Ω Niepewność pomiaru oporu wynosi zatem 28 Ω
28
Wyznaczony na podstawie przeprowadzonego doświadczenia opór opornika wynosi zatem
Ω
29
Ciekawostki Najlżejszym pierwiastkiem na ziemi jest Wodór – ma tylko 0,0899 kg/m³ czyli 0, kg/dm³ Najcięższym pierwiastkiem na ziemi jest Osm – ma aż 22610kg/m³ czyli 22,61kg/dm³ Gdybyśmy wpompowali 2l Wodoru do butelki, to warzyła by ona 0, kg czyli ok. 0,09 g. Gdybyśmy wlali 2l Osmu do butelki, to warzyła by prawie tyle samo co ja – 45,22kg
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.