Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.

Podobne prezentacje


Prezentacja na temat: "Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1."— Zapis prezentacji:

1 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1 Linearyzacja Modele liniowe powstają też w wyniku linearyzacji nieliniowych modeli zarówno wejście – wyjście jak i przestrzeni stanu w otoczeniu tzw. trajektorii nominalnej Weźmy nieliniowy niestacjonarny model przestrzeni stanu - równanie stanu - równanie wyjścia gdzie - stan - wejście - wyjście - funkcje różniczkowalne w sposób ciągły względem swoich argumentów Skupimy się najpierw na modelach przestrzeni stanu

2 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania2 Trajektorię nominalną określa się w następujący sposób: Definicja trajektorii nominalnej: Dla nominalnego sygnału wejścia nominalna trajektoria stanu spełnia równanie stanu i nominalna trajektoria wyjścia spełnia równanie wyjścia

3 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania3 Jeżeli nominalna trajektoria wejścia jest stała trajektoria stanu jest stanem równowagi,, który dla wszystkich spełnia równanie Podobnie nominalna trajektoria wyjścia staje się trajektorią stałą, która spełnia równanie

4 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania4 Odchylenia stanu ( w tym stanu początkowego), wejścia i wyjścia od ich trajektorii nominalnych (równowagi) oznaczymy Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Ograniczymy się na tym wykładzie tylko do tego drugiego przypadku Korzystając z powyższych oznaczeń – równanie stanu

5 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania5 Z definicji trajektorii nominalnej, w szczególności trajektorii równowagi, stanu i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie stanu

6 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania6

7 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania7 Zlinearyzowane równanie stanu

8 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania8 Podobnie dla równania wyjścia Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Z definicji trajektorii nominalnej wyjścia

9 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania9 i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie wyjścia

10 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania10

11 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania11 Zlinearyzowane równanie wyjścia

12 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania12 Model szczególny trajektorii nominalnych – stała trajektoria wejścia, trajektoria stanu = stan równowagi Model zlinearyzowany w otoczeniu stanu równowagi

13 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania13 Przykład 5a Linearyzacja modelu stanu SPS z przykładu 4 a) wskazanie równowagowej trajektorii nominalnej – trajektorii równowagi Wykazanie, że istnieją rozwiązania układu równań Układ 3 równań algebraicznych nieliniowych z 6 niewiadomymi Zakładamy: Obliczamy:

14 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania14 Nietrudno pokazać, że takie rozwiązania istnieją, np.

15 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania15 b) obliczenie macierzy stanu A

16 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania16 c) obliczenie macierzy wejścia B

17 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania17 d) zlinearyzowane równanie stanu

18 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania18 e) obliczenie macierzy wyjścia C f) obliczenie macierzy bezpośredniego przejścia D

19 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania19 d) zlinearyzowane równanie wyjścia

20 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania20 Podsumowanie: - zlinearyzowane równanie stanu - zlinearyzowane równanie wyjścia

21 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania21 Podobnie można przedstawić linearyzację modeli wejście - wyjście Weźmy nieliniowy niestacjonarny model wejście - wyjście gdzie - wejście - wyjście - funkcje różniczkowalne w sposób ciągły względem swoich argumentów

22 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania22 Trajektorię nominalną określa się w analogiczny sposób: Definicja trajektorii nominalnej: Dla nominalnego sygnału wejścia nominalna trajektoria wyjścia modelu wejście - wyjście spełnia równanie: z warunkami początkowymi:

23 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania23 Jeżeli nominalna trajektoria wejścia jest stała nominalna trajektoria wyjścia jest stała,, i spełnia dla wszystkich równanie Z określenia trajektorii równowagi:

24 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania24 Odchylenia wejścia i wyjścia (i ich warunków początkowych) od ich trajektorii równowagi oznaczymy

25 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania25 Rozwijamy funkcję w szereg Taylora w otoczeniu wartości nominalnych Korzystając z powyższych oznaczeń – równanie wejście - wyjście Biorąc pod uwagę

26 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania26 i zakładając, że warunki zaniedbania reszty z wyrazów wyższych rzędów są spełnione Zlinearyzowane równanie wejście - wyjście

27 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania27

28 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania28

29 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania29

30 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania30

31 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania31

32 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania32

33 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania33 Zlinearyzowane równanie wejście - wyjście

34 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania34 Przykład 5b Linearyzacja modelu stanu SPS z przykładu 4 Musimy policzyć M (1), M (0) oraz N (0)

35 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania35

36 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania36

37 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania37

38 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania38 Podsumowanie: - zlinearyzowane równanie wejście – wyjście: postać macierzowa - zlinearyzowane równanie wejście – wyjście: postać zwykła

39 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania39 Kategorie otrzymanego modelu parametryczny dynamiczny ciągły liniowy o parametrach skupionych stacjonarny deterministyczny

40 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania40 Modyfikacje modelu podsystemu mechanicznego Moment oporowy dzielony często na dwie części: wewnętrzny – opory strat samego wirnika zewnętrzny – od urządzenia napędzanego Zasadnicza składowa momentu oporowego wewnętrznego – moment oporowy tarcia lepkiego Równanie momentu oporowego przyjmie w takim przypadku postać: Gdyby interesowało nas położenie wału silnika wyprowadzone modele należy uzupełnić o gdzie, D – współczynnik tarcia lepkiego gdzie, Θ – położenie kątowe wału silnika

41 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania41 Dziękuję – koniec materiału prezentowanego podczas wykładu Inne przykłady modeli – Dodatek A

42 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania42 Dodatek A Systemy mechaniczne – przykładowe modele Przykład D-1

43 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania43

44 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania44

45 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania45 Przykład D-2

46 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania46

47 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania47 Przykład D-3

48 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania48

49 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania49

50 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania50 Przykład D-4 Systemy elektryczne – przykładowe modele

51 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania51

52 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania52 Przykład D-5

53 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania53 Przykład D-6

54 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania54

55 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania55 Z drugiego z ostatnich równańPodstawiając do pierwszego i porządkując otrzymamy

56 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania56 Ustalanie warunków początkowych – przykłady: systemy elektryczne W dotychczas przedstawionych przykładach nie skupialiśmy uwagi na określaniu wartości warunków początkowych dla otrzymywanych r.r. modelu, gdyż w przykładach tych ich określenie nie powinno nastręczać trudności. Spotkać można jednak zadania w których określenie warunków początkowych wymaga pewnego skupienia. Podamy przykłady takich zadań zaczerpnięte z elektrotechniki

57 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania57 Przydatne przy określaniu warunków początkowych wskazówki Przypomnijmy zależności wiążące wartości napięcia i prądu na podstawowych elementach układów elektrycznych - możliwa skokowa zmiana prądu - możliwa skokowa zmiana napięcia - możliwa skokowa zmiana prądu - niemożliwa skokowa zmiana napięcia

58 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania58 - możliwa skokowa zmiana napięcia - niemożliwa skokowa zmiana prądu

59 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania59 Przykład WP-1 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili t=0 - tuż przed przełączeniem przełącznika P, w obwodzie panuje stan ustalony. W chwili t = 0 zostaje przełączony przełącznik P zgodnie ze strzałką na rysunku. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na kondensatorze C oraz prądu pobieranego ze źródła

60 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania60 Model systemu Potrzebne warunki początkowe Dla wejściowego oczka, dla każdej chwili t

61 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania61 W szczególności Stąd oraz

62 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania62 Prąd i nie może zmienić się skokowo (nagle) a jego wartość jest równa Mamy Dalej

63 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania63 Zatem i ostatecznie

64 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania64 Przykład WP-2 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili tuż przed wyłączeniem (t=0 - ) wyłącznika W w obwodzie panował stan ustalony. W chwili t = 0 zostaje wyłączony wyłącznik W. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na zaciskach wyłącznika u w (t) przy zadanym napięciu u(t)

65 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania65 Model systemu Potrzebne warunki początkowe Napięcie na kondensatorze nie może się skokowo zmienić, więc

66 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania66 Napięcie na wyłączniku Równanie spójności dla wejściowego oczka, dla chwil przed wyłączeniem Stąd

67 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania67 Mamy zależność Ponieważ oraz

68 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania68 Stąd Ponieważ Stąd

69 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania69 Przykład WP-3 Do zacisków układu podłączone jest napięcie u(t)=E. W chwili tuż przed wyłączeniem (t=0 - ) wyłącznika W w obwodzie panował stan ustalony. W chwili t = 0 zostaje wyłączony wyłącznik W. Zbudować model matematyczny pozwalający badać zależność przebiegu napięcia na zaciskach odbiornika R o przy zadanym napięciu u(t)

70 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania70 Model systemu Oczywiście, dla t>0 Potrzebne warunki początkowe

71 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania71 Ponieważ napięcie na kondensatorze nie może się nagle zmienić Z stanu ustalonego przed załączeniem wynika Dla znalezienia drugiego warunku początkowego Z równania dla węzła

72 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania72 Prąd w cewce nie może zmienić się skokowo, więc Stąd Zatem

73 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania73 Systemy hydrauliczne – przykładowe modele

74 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania74 Przykład D-7

75 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania75

76 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania76 Przykład D-8

77 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania77

78 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania78 Przykład D-9

79 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania79

80 Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania80


Pobierz ppt "Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1."

Podobne prezentacje


Reklamy Google