Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
KROK PO KROKU DO MATURY Z MATEMATYKI
2
Jesteśmy uczniami klasy 3d z Zespołu Szkół Nr 1 im
Jesteśmy uczniami klasy 3d z Zespołu Szkół Nr 1 im. Noblistów Polskich w Pyrzycach. W ramach projektu unijnego „Kompetencje Kluczowe Drogą do Kariery” przygotowujemy się do egzaminu maturalnego z matematyki. Ponieważ jesteśmy uczniami klasy humanistycznej, to przygoda z matematyką nabiera nowego wymiaru. Od początku roku szkolnego krok po kroku „przechodzimy” przez kolejne działy matematyki, aby jak najlepiej zdać egzamin. Wybraliśmy kilka przykładowych zadań, które rozwiązaliśmy. STANOWIMY ZESPÓŁ Z1M2
3
ZESPÓŁ Z1M2
4
ROZDZIAŁ I LICZBY I DZIAŁANIA
5
1. Uzasadnij, że liczba jest wymierna. [2p]
2. Pan Lewandowski zarabia miesięcznie 3500 zł netto. W grudniu na jego konto razem z pensją wpłynął dodatek świąteczny, a kwota, którą otrzymał, wyniosła 3745 zł. Jaki procent comiesięcznej pensji stanowi dodatek świąteczny? 3. Dane są zbiory: A-Zbiór liczb rzeczywistych spełniających warunek: │x - 3│< 6, B- zbiór liczb rzeczywistych spełniających warunek: 1≤ 3x – 2 ≤12. Ile parzystych liczb naturalnych należy do zbioru A\ B [4p]
6
ODPOWIEDZI: ROZDZIAŁ I LICZBY I DZIAŁANIA
Zadanie 1. Postęp: Zastosowanie własności pierwiastków: * = = 1p Rozwiązanie bezbłędne: Obliczenie wartości wyrażenia 1, zatem jest to liczba wymierna. 2p
7
Zadanie 2. Postęp: Zapisanie równania: 3500p=245, gdzie p oznacza szukany procent. 1p Rozwiązanie bezbłędne: Obliczenie p: p=7% 2p
8
Zadanie 3. 1p 2p 3p 4p Postęp: Wyznaczenie zbioru A: A=(-3; 9)i 3
Pokonanie zasadniczych trudności Zapisanie nierówności: 3x-21 i 3x-2≤12 2p Rozwiązanie prawie całkowite: Wyznaczenie zbioru B B =<1; 4 > 3p Rozwiązanie bezbłędne: Wyznaczenie zbioru A\B oraz parzystych liczb naturalnych należących do zbioru A\B=(-3; 1)(4 ;9); są trzy takie liczby 4p
9
WYRAŻENIA ALGEBRAICZNE
ROZDZIAŁ II WYRAŻENIA ALGEBRAICZNE
10
1. Dany jest wielomian y= -2x2 + bx + c
1. Dany jest wielomian y= -2x2 + bx + c. Wiadomo, że do wykresu należą punkty A=(1,6), B(-2,-9). Wyznacz parametry b,c. [2p] 2. Wyznacz dziedzinę wyrażenia W= 3. Dany jest wielomian W(x)=2 x2 – mx + 5m. Wyznacz wszystkie wartości parametru m tak, aby wielomian miał dokładnie dwa miejsca zerowe. [4p]
11
ODPOWIEDZI: ROZDZIAŁ II WYRAŻENIA ALGEBRAICZNE
Zadanie 1. Postęp: Zapisanie układu: 1p Rozwiązanie bezbłędne: Rozwiązanie układu równań 2p
12
Zadanie 2. Postęp: Zapisanie warunku x3 – 16x = 0 i doprowadzenie go do postaci x(x2 -16) = 0 1p Rozwiązanie bezbłędne: Rozwiązanie warunku i zapisanie odpowiedzi: D=R\ {-4, 0, 4} 2p
13
Zadanie 3. Postęp: Zapisanie nierówności wynikającej z treści zadania: Δ>0 1p Pokonanie zasadniczych trudności. Zapisanie nierówności: m2 -40m>0 2p Rozwiązanie prawie całkowite: Wyznaczenie pierwiastków trójmianu kwadratowego: m1=0, m2=40 3p Rozwiązanie bezbłędne: Rozwiązanie nierówności: mє(-∞,0)(40,+∞) 4p
14
RÓWNANIA I NIERÓWNOŚCI
ROZDZIAŁ III RÓWNANIA I NIERÓWNOŚCI
15
1. Rozwiąż równanie 3x3 – 6x2 + 5x -10 = 0
[2p] 2. Rozwiąż nierówność (2x – 1)2 –( 5x +2)2 >8(x+1) + 8x2 – 13 – 36x2.Podaj największą liczbę całkowitą spełniającą tę nierówność. [4p] Wykaż, że dla każdej wartości parametru m nierówność x2 + (m+1)x + m2 + 1<0 jest fałszywa dla każdej liczby rzeczywistej x.
16
ODPOWIEDZI: ROZDZIAŁ III RÓWNANIA I NIERÓWNOŚCI 1p Zadanie 1. 2p
Postęp: Zapisanie równania w postaci : (x-2)(3x2+5)=0 1p Rozwiązanie bez błędne: Zapisanie odpowiedzi: x=2 2p
17
Zadanie 2. Postęp: Zastosowanie wzorów skróconego mnożenia do przekształcenia lewej strony nierówności 8x5 -12x2 + 6x-1 – (25x2 + 20x + 4x)>8(x + 1) + 8x5 -13 – 36x2 1p Istotny postęp: Zapisanie lewej strony nierówności: -x2 -22x>0 2p Pokonanie zasadniczych trudności Rozwiązanie nierówności : mє(-22,0) 3p Rozwiązanie bezbłędne: Zapisanie odpowiedzi: x=-1 4p
18
Zadanie 3. Postęp: Wyznaczenie wyróżnika trójmianu kwadratowego: Δ= - 3m2 +2m -3 1p Pokonanie zasadniczych trudności Wykazanie, że wyróżnik jest ujemny dla każdej liczby rzeczywistej m : Δm = -32 i ramiona są skierowane w dół 3p Rozwiązanie bezbłędne: Zapisanie wniosku: wyróżnik Δ= -3m2 +2m -3 stale ujemny i ramiona paraboli skierowane do góry, zatem wszystkie wartości trójmianu są dodatnie, czyli podana nierówność jest zawsze fałszywa. 4p
19
ROZDZIAŁ IV FUNKCJE
20
1. Wyznacz dziedzinę i miejsca zerowe funkcji f(x)=
[2p] 2. Miejscem zerowym funkcji f(x)=ax + 2 jest liczba . Wyznacz wzór funkcji f i podaj argumenty, dla których wartości funkcji f są mniejsze od wartości funkcji g(x)= -3x + 4. [4p] 3. Wykres funkcji f danej wzorem f(x)= x2 +bx +c. Wyznacz współczynniki b i c, a następnie naszkicuj wykres funkcji f Dla jakich wartości x wykres funkcji f leży powyżej wykresu funkcji g(x) = x + 2? [5p]
21
ODPOWIEDZI: ROZDZIAŁ IV FUNKCJE Zadanie 1. Postęp:
Wyznaczenie dziedziny funkcji: D=R\{-5} 1p Rozwiązanie bezbłędne: Wyznaczenie miejsc zerowych: x=0, x=5 2p
22
Zadanie 2. Postęp: Zapisanie równania: a +2 =0 1p Istotny postęp:
Wyznaczenie a: a=-4 i zapisanie wzoru funkcji: y= -4x+2 2p Pokonanie zasadniczych trudności Zapisanie nierówności : -4x+2< -3x+4 3p Rozwiązanie bezbłędne: Rozwiązanie nierówności: xє(-2;∞) 4p
23
Zadanie 3. Postęp: Zapisanie funkcji w postaci iloczynowej y= - (x+2)(x-4) 1p Pokonanie zasadniczych trudności Przekształcenie wzoru funkcji do postaci ogólnej y= - x2 + x + 4 i podanie odpowiedzi b=1, c=4. Naszkicowanie wykresu funkcji 2p Rozwiązanie prawie całkowite: Zapisanie nierówności - x2 + x + 4> x+2 3p Rozwiązanie bezbłędne: Podanie odpowiedzi: xє(-2,2) 4p
24
ROZDZIAŁ V CIĄGI
25
1. Dany jest ciąg o wyrazie ogólnym an=n5 – 5n2 + n -5
1. Dany jest ciąg o wyrazie ogólnym an=n5 – 5n2 + n -5. Wykaż, że ten ciąg ma tylko jeden wyraz równy 0. [2p] 2. Tomek, Marcin, Jurek zbierają znaczki. Liczby znaczków chłopców w podanej kolejności tworzą malejący ciąg geometryczny. Marcin ma 450 znaczków. Oblicz, ile znaczków mają pozostali chłopcy, jeśli w sumie wszyscy trzej mają ich 1425. [5p] 3. Dany jest ciąg (x, 2x+y, y,18). Wyznacz liczby x i y tak, aby trzy pierwsze wyrazy tego ciągu tworzyły ciąg arytmetyczny, a trzy ostatnie – geometryczny.
26
ODPOWIEDZI: ROZDZIAŁ V CIĄGI Zadanie 1. Postęp:
Zapisanie wyrazu ogólnego ciągu w postaci : an =(n2 + 1)(n - 5) 1p Rozwiązanie bezbłędne: Uzasadnienie tezy zadania: jedynym rozwiązaniem równania w zbiorze liczb naturalnych dodatnich jest liczba 5, zatem tylko piąty wyraz ciągu jest równy 0. 2p
27
Zadanie 2. Postęp: Zapisanie układu równań: 1p
Pokonanie zasadniczych trudności: Zapisanie równania z jedną niewiadomą np. : x2 -975x 500=0 2p Rozwiązanie prawie całkowite: Rozwiązanie równania: x=300 lub x=675 3p Rozwiązanie bezbłędne: Wyznaczenie drugiej zmiennej i zapisanie odpowiedzi uwzględniającej treść zadania: Tomek ma 675, a Jurek 300 znaczków. 5p
28
Zadanie 3. Istotny postęp: Zapisanie układu równań: 2p
Pokonanie zasadniczych trudności Zapisanie równania z jedną niewiadomą, np. : 9x2 =18(2x-3x) 3p Rozwiązanie prawie całkowite: Rozwiązanie równania: x=0 lub x=-2 4p Rozwiązanie bezbłędne: Wyznaczenie drugiej zmiennej i zapisanie odpowiedzi: lub 5p
29
FUNKCJE TRYGONOMETRYCZNE
ROZDZIAŁ VI FUNKCJE TRYGONOMETRYCZNE
30
1. Wykaż, że dla dowolnego kąta ostrego α prawdziwa jest równość
tg α = [2p] 2. Jedna z przyprostokątnych trójkąta jest o 6 dłuższa od drugiej. Tangens kąta ostrego jest równy . Wyznacz pole i obwód tego trójkąta. [6p] 3. Dany jest kąt α taki, że 00 < α < 900 i tg α = 2. Oblicz wartość wyrażenia W= Wynik przedstaw w postaci ułamka o wymiernym mianowniku. [4p]
31
ODPOWIEDZI: ROZDZIAŁ VI FUNKCJE TRYGONOMETRYCZNE Zadanie 1. Postęp:
Przekształcenie lewej strony tożsamości do postaci: L= 1p Sprowadzenie do wspólnego mianownika i wykazanie tożsamości: L= = =P 2p
32
Zadanie 2. Postęp: Zapisanie długości przyprostokątnych trójkąta w postaci: a, a+6 1p Istotny postęp: Zapisanie równania: = 2p Pokonanie zasadniczych trudności Rozwiązanie równania: a=9 3p Rozwiązanie prawie całkowite: Wyznaczenie długości wszystkich boków trójkąta: 9, 15, 354 4p Rozwiązanie bezbłędne: Obliczenie pola i obwodu trójkąta: P= , L=3(8+54) 6p
33
Zadanie 3. Postęp: 1p Zapisanie układu równań: Istotny postęp: 2p
Rozwiązanie układu równań: 2p Pokonanie zasadniczych trudności: Zapisanie wyrażenia w postaci: W= 3p Rozwiązanie bezbłędne: Usunięcie niewymierności z mianownika i zapisanie wartości wyrażenia w żądanej postaci: W= 4p
34
ROZDZIAŁ VII PLANIMETRIA
35
1. Dany jest prostokąt ABCD o przekątnych długości 12 i kącie między przekątnymi Oblicz pole tego prostokąta. [2p] 2. Długości boków trójkąta prostokątnego tworzą rosnący ciąg arytmetyczny o pierwszym wyrazie 2. Wyznacz pole i obwód trójkąta. [5p] 3. Dany jest równoległobok ABCD o kącie 1200, dłuższej przekątnej 18 i krótszym boku 8. Oblicz długość drugiego boku tego równoległoboku.
36
ODPOWIEDZI: ROZDZIAŁ VII PLANIMETRIA Zadanie 1. Postęp:
Obliczenie jednego z boków prostokąta: 6, 63 1p Rozwiązanie bezbłędne: Obliczenie drugiego z boków prostokąta i jego pola: P=363 2p
37
Zadanie 2. Postęp: Zapisanie długości przyprostokątnych trójkąta w postaci: a, a+6 1p Istotny postęp: Zapisanie równania: = 2p Pokonanie zasadniczych trudności Rozwiązanie równania: a=9 3p Rozwiązanie prawie całkowite: Wyznaczenie długości wszystkich boków trójkąta: 9, 15, 354 4p Rozwiązanie bezbłędne: Obliczenie pola i obwodu trójkąta: P = , L=3(8+54) 6p
38
Zadanie 3. Postęp: Wykonanie rysunku z oznaczeniami lub wprowadzenie dokładnych oznaczeń:BC=8; CE – odcinek prostopadły do AB i E należy do prostej AB; jeżeli kąt ABC=1200, to kąt CBE=600 1p Istotny postęp: Wyznaczenie długości odcinka BE: BE=4 2p Pokonanie zasadniczych trudności: Wyznaczenie długości wysokości CE: CE=43 3p Rozwiązanie prawie całkowite: Wyznaczenie długości odcinka AE: AE=269 4p Rozwiązanie bezbłędne: Wyznaczenie długości drugiego boku równoległoboku AB: AB=269- 4 5p
39
GEOMETRIA ANALITYCZNA
ROZDZIAŁ VIII GEOMETRIA ANALITYCZNA
40
1. Wyznacz równanie prostej k prostopadłej do prostej l o równaniu 2x + 5y – 1 = 0 przechodzącej przez punkt A=(0,-4). [2p] 2. Prosta l o równaniu 2x - y + 4 = 0 przecina okrąg o równaniu x2 – 2x + y2 + 4y = 32 w punktach A i B. Wyznacz współrzędne punktów A, B i długość cięciwy AB. [4p] 3. Dany jest kwadrat ABCD. Kolejne wierzchołki tego kwadratu mają współrzędne A=(-2,-2), B=(3,3). Wyznacz współrzędne wierzchołka C kwadratu Wyznacz równanie okręgu o środku w punkcie B i promieniu r =AB. [7p]
41
ODPOWIEDZI: ROZDZIAŁ VIII GEOMETRIA ANALITYCZNA Zadanie 1. Postęp:
Wyznaczenie współczynnika kierunkowego prostej prostopadłej do: a=-5 1p Rozwiązanie bezbłędne: Wyznaczenie równania prostej prostopadłej do: y=-5x-12 2p
42
Zadanie 2. Postęp: Zapisanie układu równań: 1p
Pokonanie zasadniczych trudności: Rozwiązanie układu i zapisanie współrzędnych punktów A, B: A=(0,4); B= 3p Rozwiązanie bezbłędne: Wyznaczenie długości cięciwy AB: AB= 4p
43
Zadanie 3. Postęp: Wyznaczenie długości boków kwadratu: AB= 1p
Istotny postęp: Wyznaczanie równania prostej AB: y=x 2p Pokonanie zasadniczych trudności Wyznaczanie równania prostej BC: y=-x+6 3p Zapisanie układu równań: 5p Rozwiązanie prawie całkowite: Wyznaczenie współrzędnych wierzchołka C: C(-2,8) lub C(2,-8) 6p Rozwiązanie bezbłędne: Wyznaczenie równania okręgu: (x-3)2+(y-3)2=50 7p
44
ROZDZIAŁ IX STEREOMETRIA
45
1. Dany jest graniastosłup prawidłowy trójkątny o wysokości 12
1. Dany jest graniastosłup prawidłowy trójkątny o wysokości 12. Kąt nachylenia przekątnej ściany bocznej do płaszczyzny podstawy ma miarę Oblicz objętość graniastosłupa. [2p] 2. Dany jest prostopadłościan, którego przekątna jest równa 89, a krawędzie podstawy 3 i 4. Oblicz długość wysokości tego prostopadłościanu. 3.Tworząca stożka jest nachylona do podstawy pod kątem 600, pole powierzchni bocznej stożka jest równe 162. Oblicz objętość tego stożka. [6p]
46
ODPOWIEDZI: ROZDZIAŁ IX STEREOMETRIA Zadanie 1. Postęp:
Wyznaczenie krawędzi podstawy graniastosłupa a=45 1p Rozwiązanie bezbłędne: Wyznaczenie objętości graniastosłupa: V=1443 2p
47
Zadanie 2. Postęp: Wyznaczenie przekątnej podstawy: d=5 1p
Rozwiązanie bezbłędne: Wyznaczenie wysokości ostrosłupa: h=8 2p
48
Zadanie 3. Postęp: Wykonanie rysunku z oznaczeniami lub wprowadzenie dokładnych oznaczeń: h,l – odpowiednio wysokość i tworząca stożka r – promień podstawy stożka 1p Pokonanie zasadniczych trudności Zapisanie układu równań: 5p Rozwiązanie prawie całkowite: Rozwiązanie układu równań: r=9 i l=18 4p Rozwiązanie bezbłędne: Wyznaczenie wysokości i objętości walca: h=93, V=2433 6p
49
RACHUNEK PRAWDOPODOBIEŃSTWA
ROZDZIAŁ X RACHUNEK PRAWDOPODOBIEŃSTWA
50
1. Rzucamy kostką do gry i monetą
1. Rzucamy kostką do gry i monetą. Oblicz prawdopodobieństwo, że wyrzucimy orła i liczbę oczek będącą liczbą pierwszą. [2p] 2. A i B są zdarzeniami losowymi takimi, że P(A)=0,1 i P(B)=0,3, P(AB)=0,75. Oblicz P(AB). 3. Rzucamy dwa razy sześcienną symetryczną kostką do gry. Oblicz prawdopodobieństwo, że na każdej kostce wypada liczba oczek podzielna przez 3 lub na każdej kostce wypadło mniej niż 4 oczka. [6p]
51
ODPOWIEDZI: ROZDZIAŁ X RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. Postęp:
Wyznaczenie liczebności zbioru zdarzeń elementarnych: 1p Rozwiązanie bezbłędne: Wyznaczenie liczebności zbioru zdarzeń A – wyrzucenie orła i liczby oczek będącej liczbą pierwszą: A=3 i obliczenie prawdopodobieństwa zdarzenia A: P(A)= = 2p
52
Zadanie 2. Postęp: Wyznaczenie prawdopodobieństwa zdarzenia A i B: P(A)=0,9, P(B)=0,85 1p Rozwiązanie bezbłędne: Obliczenie prawdopodobieństwa sumy zdarzeń A i B: P(AB)=0,85 2p
53
Zadanie 3. Postęp: Wyznaczenie liczebności zbioru zdarzeń elementarnych: 1p Istotny postęp: Wyznaczenie liczebności zdarzenia A – na każdej kostce wypadła liczba oczek podzielna przez 3: A=4i wyznaczenie liczebności zdarzenia B – na każdej kostce wypadło mniej niż 4oczka: B=9 3p Pokonanie zasadniczych trudności: Wyznaczenie liczebności zdarzenia AB: AB=1 4p Rozwiązanie prawie całkowite: Wyznaczenie prawdopodobieństw zdarzeń A, B, AB: P(A)= , P(B)= , P( AB )= 5p Rozwiązanie bezbłędne: Obliczenie prawdopodobieństwa sumy zdarzeń A i B: P(AB)= 6p
63
Tu możesz znaleźć wiele ciekawych zadań
Strony internetowe z zadaniami matematycznymi 1. 2. 3. 4. 5. Tu możesz znaleźć wiele ciekawych zadań
64
Prezentacja przygotowana w ramach projektu „Kompetencje kluczowe drogą do kariery” współfinansowanego ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego wraz z logotypami Projektu WSP TWP, Unii Europejskiej i Programu Operacyjnego Kapitał Ludzki”
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.