Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

2.Relacyjny model baz danych

Podobne prezentacje


Prezentacja na temat: "2.Relacyjny model baz danych"— Zapis prezentacji:

1 2.Relacyjny model baz danych
Bazy danych 2.Relacyjny model baz danych Algebra relacji P. F. Góra semestr letni 2007/08

2 Relacyjne systemy baz danych
…zdominowały rynek. Systemy nierelacyjne mają status eksperymentalny, lub stosowane są w bardzo specjalistycznych kontekstach. Dlatego zdecydowana większość tego, o czym będziemy mówić, dotyczyć będzie systemów relacyjnych. Bazy danych - wykład 2

3 Tylko jeden sposób reprezentowania danych: dwuwymiarowa tabela
(Ullman i Widom nazywają ją „relacją”) Nazwa tabeli Nazwy kolumn (atrybuty) Krotka Składowa krotki Bazy danych - wykład 2

4 Intuicja, jaką niesie słowo „tabela”, może być myląca:
Tyle teoria. W praktyce różnie to bywa, RDBMS niekiedy dopuszcza powtarzające się krotki. Wówczas tabela nie jest zbiorem, ale wielozbiorem. W modelu relacyjnym „tabela” nie jest listą, ale zbiorem W jednej tabeli nie mogą wystąpić dwie takie same krotki Kolejność, w jakiej występują krotki, nie ma znaczenia Bazy danych - wykład 2

5 Trochę terminologii: Więzy
Klucze Więzy jednoznaczności Więzy integralności referencyjnej Więzy domenowe (zakresu) Więzy ogólne Bazy danych - wykład 2

6 A jeśli występują i są różne, to znaczy, że „klucz” nie jest kluczem.
Nie jest to ścisła definicja klucza — definicję ścisłą poznamy w przyszłości. Klucze Klucz — atrybut lub zbiór atrybutów, który jednoznacznie definiuje krotkę w tabeli lub encję wewnątrz zbioru encji. W danej tabeli nie występują dwie krotki, które miałyby identyczne wartości wszystkich atrybutów tworzących klucz. A jeśli występują i są różne, to znaczy, że „klucz” nie jest kluczem. Uwaga: abstrakcyjny obiekt w pamięci komputera nie musi mieć klucza, bo jest jednoznacznie identyfikowany przez adres przydzielonego mu obszaru pamięci. Bazy danych - wykład 2

7 Gdybyśmy próbowali utworzyć w jednej klasie dwa różne obiekty o takich samych kluczach, DBMS powinien to uniemożliwić. Bazy danych - wykład 2

8 Właściwy dobór kluczy jest trudny, bo muszą one dobrze odpowiadać rzeczywistości
Osoba: Imię, Drugie Imię i Nazwisko? Nie wystarczy. Osoba: Imię, Drugie Imię, Nazwisko i Data Urodzenia? W bazie reprezentującej odpowiedno duży zbiór ludzi nie wystarczy. Osoba: Imię i Nazwisko? Nie wystarczy. Ściśle rzecz biorąc, PESEL nie służy tylko jako indeks, ale to jest zupełnie inna historia… Czasami wprowadza się nowe pole tylko po to, aby mogło służyć jako indeks Studenci: Numer Indeksu „Rządowa” baza danych: PESEL Bazy danych - wykład 2

9 Inny przykład — faktury
Firma ma bazę gromadzącą dane o wystawianych fakturach. Co będzie kluczem? Numer Faktury. Jeśli numeracja zaczyna się od początku w każdym roku, Numer Faktury i Rok. Jeśli poszczególne działy stosują własną numerację faktur, Numer Faktury i Nazwa Działu lub Numer Faktury, Nazwa Działu i Rok. Jak widać, właściwy dobór klucza zależy od rzeczywistości, którą chcemy przedstawić w bazie danych. Bazy danych - wykład 2

10 Wówczas zbiór atrybutów {PESEL, Nazwisko} także jest kluczem!
Ważna uwaga: Przypuśćmy, że mamy „rządową” bazę danych osobowych, w której kluczem jest atrybut PESEL. Wówczas zbiór atrybutów {PESEL, Nazwisko} także jest kluczem! Bazy danych - wykład 2

11 W rzeczywistości trzebaby to sprawdzić…
Podobnie, jeśli tworzymy bazę danych szkół podstawowych, zbiór atrybutów {Ulica, NrDomu, NrSzkoły} będzie kluczem. Załóżmy, że tak jest. Jeśli rozszerzymy ten zbiór do {Miasto, Ulica, NrDomu, NrSzkoły}, także otrzymamy klucz. Podobnie będzie jeśli dodamy informację o województwie. W rzeczywistości trzebaby to sprawdzić… Bazy danych - wykład 2

12 Klucze minimalne. Nadklucze.
W poprzednim przykładzie może się zdarzyć, że w dwu różnych miastach będą istnieć ulice Kościuszki i w dodatku na każdej z tych ulic pod numerem 1 będzie mieścić się szkoła podstawowa. Podobnie w dwu miastach na ulicy Dąbrowskiego (ale w budynkach o różnych numerach!) mogą się mieścić szkoły podstawowe o numerze 16. Wreszcie może się zdarzyć, że szkoły o numerze 53 (w różnych miastach) będą się mieścić w budynku o numerze 8 (przy ulicach o różnych nazwach). Zbiór {Ulica, NrDomu, NrSzkoły} nazywamy w tej sytuacji kluczem minimalnym. Jego nadzbiór nazywamy nadkluczem. W innej terminologii „klucz minimalny” zwany jest po prostu „kluczem” Bazy danych - wykład 2

13 Dygresja: Zbiory słabych encji
Jeśli niektóre (lub wszystkie) elementy klucza pewnego zbioru encji wybiera się spośród atrybutów innego zbioru encji, zbiór o tak utworzonym kluczu nazywa się zbiorem słabych encji. Typowo Przy strukturze hierarchicznej nazwa (czy inny atrybut) obiektu może identyfikować go w podhierarchii, ale nie w całej hierarchii. Na przykład Numer Szkoły identyfikuje szkołę w mieście, ale nie w województwie. Zbiór encji szkoły będzie musiał brać część swojego klucza z innego zbioru encji (miasta), więc będzie to słaba encja. Zbiór łączący, powstały w celu wyeliminowania relacji wieloargumentowych, prawie zawsze będzie słaby. Bazy danych - wykład 2

14 Reprezentacja graficzna zbiorów słabych encji
Klucz zbioru Szkoły numer nazwa Liczne inne atrybuty Miasta Szkoły Miasto Zbiór słabych encji i związki łączące go z „dostarczycielami” (części) klucza oznaczam podwójną linią. Leży w mieście Bazy danych - wykład 2

15 Dane a metadane Tabela (realcja) to obiekt abstrakcyjny. Ma swoje atrybuty i więzy. Zbiór wszystkich takich „projektów” tabel nazywa się schematem bazy danych. Schemat wraz z informacjami o użytkownikach i ich uprawnieniach stanowi metadane („dane o danych”). Schemat tabeli w zasadzie — w czasie normalnego użytkowania — nie zmienia się w czasie. Zbiór wszystkich krotek danej tabeli („zawartość tabeli”) może się zmieniać w czasie. Zbiór taki nazywa się instancją tabeli (relacji). Instancję istniejącą teraz nazywa się instancją bieżącą. Bazy danych - wykład 2

16 Więzy jednoznaczności
Istnieje co najwyżej jeden obiekt z klasy B, który wchodzi w relację R z pewnym obiektem klasy A. Ten obiekt z klasy B nie musi istnieć, może być obiektem pustym. Innymi słowy, nie wszystkie obiekty z A muszą wchodzić w związek R. R A B Bazy danych - wykład 2

17 Więzy integralności referencyjnej
Na przykład każda informacja o dostawie towarów do magazynu musi być powiązana z dostawcą Istnieje dokładnie jeden obiekt z klasy B, który wchodzi w relację R z pewnym obiektem klasy A. Ten obiekt z klasy B musi istnieć, nie może być obiektem pustym. Innymi słowy, wszystkie obiekty z A muszą wchodzić w związek R z obiektami B. R A B W książce oznaczają to przez półokrąg. Bazy danych - wykład 2

18 Więzy integralności referencyjnej wymuszają istnienie wskazywanego obiektu. Jeślibyśmy więc zażądali usunięcia obiektu związanego więzami integralności referencyjnej, DBMS Uniemożliwi usunięcie takiego obiektu lub Usunie także wszystkie obiekty, które na obiekt usuwany wskazują. Jeśli one też są związane więzami integralności referencyjnej, usunięte zostaną obiekty, które na nie wskazują. I tak dalej.  Usuwanie kaskadowe. Bardzo niebezpieczne — nie każdego stać na zatrudnienie stu osób do wklepywania utraconych danych. Bazy danych - wykład 2

19 Nie więcej niż 10 gwiazd w jednym filmie
Inne rodzaje więzów 1. Więzy domenowe (zakresu) — atrybut może przyjąć wartości tylko z pewnego zakresu. 2. Więzy ogólne — na przykład ograniczenie stopnia związku, to jest ilości „partnerów” w relacji. Gwiazdy-w 10 Filmy Gwiazdy Nie więcej niż 10 gwiazd w jednym filmie Bazy danych - wykład 2

20 Dwanaście zasad Codda dla RDBMS
Informacje są reprezentowane logicznie w tabelach. Dane są logicznie dostępne przez podanie nazwy tabeli, wartości klucza podstawowego i nazwy kolumny. Wartości null są traktowane w jednolity sposób jako „brakujące informacje”. Nie mogą być traktowane jako puste łańcuchy czy zera. Bazy danych - wykład 2

21 Dwanaście zasad Codda dla RDBMS (cd)
Metadane są umieszczone w bazie danych tak, jak zwykłe dane. Język obsługi danych ma możliwość definiowania danych i perspektyw, więzów integralności, przeprowadzania autoryzacji, obsługi transakcji i manipulacji danymi. Perspektywy reagują na zmiany swoich tabel bazowych. Zmiana w perspektywie powoduje zmianę w tabeli bazowej. Bazy danych - wykład 2

22 Dwanaście zasad Codda dla RDBMS (cd)
W praktyce w systemach komercyjnych robi się to bardzo rzadko. Z całą pewnością nie jest to operacja, jaką rutynowo przeprowadza zwykły użytkownik! Istnieją pojedyncze operacje pozwalające na wyszukanie, wstawienie, uaktualnienie i usunięcie danych. Operacje użytkownika są logicznie oddzielone od fizycznych danych i metod dostępu. Operacje użytkownika pozwalają na zmianę schematu bazy danych bez konieczności tworzenia bazy od nowa. Bazy danych - wykład 2

23 Dwanaście zasad Codda dla RDBMS (cd)
Więzy integralności są umieszczone w metadanych, nie w zewnętrznej aplikacji. Język manipulacji danymi powinien działać bez względu na to jak i gdzie są rozmieszczone fizyczne dane oraz nie powinien wymagać zmian, gdy fizyczne dane są centralizowane lub rozpraszane. Bazy danych - wykład 2

24 Dwanaście zasad Codda dla RDBMS (cd)
Operacje na pojedynczych rekordach przeprowadzane w systemie podlegają tym samym zasadom i więzom, co operacje na zbiorach danych. Różnica wobec programowania proceduralnego, gdzie zawsze trzeba powiedzieć jak manipulować danymi. Bazy danych - wykład 2

25 Dziesiąta zasada Codda
Więzy integralności są umieszczone w metadanych, nie w zewnętrznej aplikacji. Bardzo ważna zasada! Jeśli modelowany fragment rzeczywistości zawiera jakieś ograniczenia, powinny one się znaleźć w samym projekcie bazy danych, nie w aplikacji obsługującej tę bazę. Bazy danych - wykład 2

26 Dlaczego ograniczenia umieszczamy w metadanych, nie w aplikacji?
Bo osoba pisząca aplikację może nie wiedzieć o tych ograniczeniach, może nie uznać je za istotne i może nie umieścić ich w swoim projekcie. Bo osoba pisząca kolejną aplikację może nie umieścić ich w swoim projekcie (z powodów jak wyżej). Bo doświadczenie uczy, że jeśli ograniczenia nie są wbudowane w projekt bazy, prędzej czy później zdarzy się jakieś nieszczęście… Bazy danych - wykład 2

27 Przykład Dobrze zaprojektowana baza danych studentów i grup ćwiczeniowych musi mieć wbudowane ograniczenie stanowiące, że do jednej grupy mającej zajęcia w pracowni komputerowej A, nie można zapisać więcej niż 21 studentów. Ostatnio na zajęcia zgłosiło się 40 osób, wszystkie legalnie wpisane w systemie USOS Bazy danych - wykład 2

28 Jak realizujemy więzy? Zgodnie z pierwotną ideą Codda, więzy powinny być zawarte w samej strukturze tabel — metadane same w sobie stanowią część dokumentacji projektu bazodanowego. Niekiedy robi się też tak: Baza danych nie udostępnia swoich tabel zewnętrznym aplikacjom bezpośrednio, a jedynie za pomocą procedur składowanych. Złożone zapytania warto jest umieszczać w samej bazie danych, na przykład w postaci perspektyw. Bazy danych - wykład 2

29 Zasady projektowania Dokładność — projekt powinien odpowiadać specyfikacji, tabele lub zbiory encji powinny odzwierciedlać świat rzeczywisty. Unikanie redundancji — bo zajmuje się zbyt wiele miejsca i ryzykuje się, że nie wszystkie wystąpienia danej informacji będą uaktualnione. Prostota — tylko tyle elementów, ile naprawdę potrzeba. Dobór właściwych elementów — nie wszystko modelujemy jako atrybuty! Bazy danych - wykład 2

30 Projekt musi być zatwierdzony przed realizacją
Projekt ma odpowiadać rzeczywistości, nie widzimisię lub (na ogół błędnej) intuicji projektanta Projektowanie bazy danych to PRACA, za którą twórca powinien być odpowiednio wynagradzany Projekt musi być zatwierdzony przed realizacją Zmiana projektu w takcie realizacji jest bardzo bolesna; powinno się jej dokonywać tylko wtedy, gdy jest ona naprawdę konieczna Bazy danych - wykład 2

31 Relacyjne języki zapytań (Relational Query Languages)
Pozwalają na manipulacje danymi i pobieranie danych z bazy Mają mocne podstawy teoretyczne (algebra relacji!) Pozwalają na znaczną optymalizację Nie są zwykłymi językami programowania, przeznaczonymi do skomplikowanych obliczeń Pozwalają użytkownikom zdefiniować co chcą osiągnąć, nie zaś jak to trzeba obliczyć (Non-operational, declarative) Choć w w praktyce na ogół zawierają pokaźny zestaw „niebazodanowych” funkcji Bazy danych - wykład 2

32 Schematy tabel wejściowych zapytania są ustalone.
Zrozumienie algebry relacji jest konieczne dla zrozumienia i prawidłowego posługiwania się SQL Zapytania odnoszą się do wystąpień (instancji) tabel. Wynikiem zapytań też są wystąpienia (instancje) tabel. Schematy tabel wejściowych zapytania są ustalone. Schematy tabel wyjściowych zapytania są określone przez definicje języka zapytań. Zapytanie odnosi się do konkretnego wystąpienia tabeli (lub tabel) o ustalonym schemacie. Bazy danych - wykład 2

33 Przykładowe wsytąpienia tabel w pewnej bazie
Rezerwacje R1 Żeglarze S1 Łódki B1 Żeglarze S2 Anglojęzyczna wersja tego przykładu jest dostępna w co najmniej dwu niezależnych miejscach w sieci… Bazy danych - wykład 2

34 Podstawowe operacje Działania teoriomnogościowe:
Suma mnogościowa (unia)  Przecięcie (iloczyn) zbiorów  Różnica zbiorów  Iloczyn kartezjański  Rzutowanie  Selekcja  Przemianowanie  Złączenie Technicznie rzecz biorąc, to też nie jest podstawowa operacja, ale występuje w praktyce tak często, że jest osobno implementowana Wynikiem każdej operacji jest tabela (relacja), można więc tworzyć operacje złożone. Algebra relacji jest domknięta! Bazy danych - wykład 2

35 Operacje teoriomnogościowe
Schematy obu tabel (relacji) wejściowych muszą mieć identyczne zbiory atrybutów Zanim zostanie obliczona suma mnogościowa, przecięcie lub różnica zbiorów, należy uporządkować atrybuty obu tabel tak, aby kolejnośc atrybutów była taka sama. Bazy danych - wykład 2

36 Ponieważ jest to zbiór, kolejność krotek nie ma znaczenia.
Suma mnogościowa R  S — zbiór krotek, z których każda należy do R lub do S (lub do obu jednocześnie) S1  S2 Ponieważ jest to zbiór, kolejność krotek nie ma znaczenia. Bazy danych - wykład 2

37 Przecięcie mnogościowe
R  S — zbiór krotek, z których każda należy jednocześnie do R i S S1  S2 Różnica mnogościowa R - S — zbiór tych krotek z R, które nie należą do S S1 – S2 Bazy danych - wykład 2

38 Uwaga na wielozbiory! Tabele (relacje) w modelu relacyjny powinny być zbiorami (krotki nie mogą się powtarzać), ale niekiedy nie są — jeśli dopuszczamy powtórzenia krotek, czyli zbiory zastępujemy wielozbiorami, zmieniają się definicje operacji mnogościowych. Suma R  S — krotka w wyniku występuje tyle razy, ile występuje w R plus tyle razy, ile występuje w S. Uwaga: jeśli nawet R i S są zbiorami, R  S może być wielozbiorem! Iloczyn R  S — krotka w wyniku występuje tyle razy, ile wynosi minimum jej wystąpień w R i S. Różnica R–S — krotka w wyniku występuje tyle razy, ile występuje ona w R minus tyle razy, ile występuje ona w S, ale nie mniej niż 0 razy. Bazy danych - wykład 2

39 Przykład: R = {A,B,B}, S = {A,B,C,C} R  S = {A,A,B,B,B,C,C}
R  S = {A,B} R–S = {B} Bazy danych - wykład 2

40 Uwaga na wielozbiory (cd)!
Tabele (relacje) w modelu relacyjny powinny być zbiorami (krotki nie mogą się powtarzać), ale niekiedy nie są. W dobrze zaprojektowanej relacyjnej bazie danych tabele muszą być zbiorami. Kiedy mogą pojawiać się wielozbiory? Wielozbiory w dobrze zaprojektowanych relacyjnych bazach danych pojawiają się (i to dość często) jako tabele wynikowe pewnych zapytań. Tabele te mogą być tabelami wejściowymi kolejnych zapytań… Bazy danych - wykład 2

41 Selekcja C(R) Wybierz z tabeli R tylko te wiersze, które spełniają warunek wyboru C. W warunku wyboru mogą pojawiać się operatory logiczne! Schemat wyjściowej relacji jest taki sam, jak relacje wejściowej. Jeśli R jest zbiorem, nie ma duplikatów. W praktyce duplikaty niekiedy się pojawiają W SQL rozróżnienie SELECT vs SELECT DISTINCT. Bazy danych - wykład 2

42 Wybierz tylko te wiersze z tabeli S2, dla których Rating > 8
Przykład Wybierz tylko te wiersze z tabeli S2, dla których Rating > 8 S2 Rating > 8(S2) Bazy danych - wykład 2

43 Rzutowanie A1,A2,…(R) Utwórz nową relację, która zawiera tylko te kolumny relacji R, które wymienione są na liście rzutowania A1,A2,… Schemat rejacji wyjściowej zawiera tylko kolumny występujące na liście rzutowania. W formalizmie matematycznym operator rzutowania eliminuje duplikaty W praktyce (SQL) eliminowania duplikatów trzeba zażądać explicite. Bazy danych - wykład 2

44 Wybierz tylko kolumny Imię, Rating z tabeli S2
Przykład S2 Imię,Rating(S2) Wybierz tylko kolumny Imię, Rating z tabeli S2 Wiek(S2) Usunięto duplikaty! Bazy danych - wykład 2

45 Składanie operatorów S2 Imię,Rating (Rating > 8(S2))
Relacja wyjściowa jednego zapytania może stać się relacją wejściową kolejnego zapytania — powstaje operator złożony. S2 Imię,Rating (Rating > 8(S2)) Bazy danych - wykład 2

46 Przemianowanie S(A1,A2,…,An)(R)
W wyniku operacji S(A1,A2,…,An)(R) z relacji R otrzymujemy relację S, mającą tyle samo atrybutów, co R. Nowymi nazwami atrybutów stają się A1, A2, …, An. Kolejność atrybutów zostaje zachowana. Jeśli chcemy tylko zmienić nazwę samej relacji, bez zmiany nazw atrybutów, piszemy S(R) . Bazy danych - wykład 2

47 Jak zapamiętać te oznaczenia?
 — sigma — select  — pi — project  — rho — rename Bazy danych - wykład 2

48 Iloczyn kartezjański S1  R1
R  S — każda krotka (wiersz) z R zostaje połączona z każdą krotką (wierszem) S Schemat wyniku ma po jednym atrybucie (kolmnie) na każdy atrybut R i po jednym atrybucie na każdy atrybut S. Nazwy atrybutów są, o ile to możliwe, dziedziczone. S1  R1 Konflikt między nazwami kolumn, który trzeba rozwiązać przez przemianowanie Bazy danych - wykład 2

49 Złączenie warunkowe (złączenie theta)
Z iloczynu kartezjańskiego R  S wybieramy tylko te krotki, które spełniają warunek C. (Na ogół) mniej krotek niż w iloczynie kartezjańskim. Schemat wyniku taki, jak schemat iloczynu kartezjańskiego. Bazy danych - wykład 2

50 Złączenie równościowe (equi-join)
Złączenie warunkowe, w którym warunek C zawiera same równości. Schemat wyniku podobny do schematu iloczynu kartezjańskiego, ale zawiera tylko jedno wystąpienie każdej kolumny, dla której zażądano równości. Złączenie naturalne — złączenie równościowe, dla którego zażądano równości we wszystkich wspólnych kolumnach. Bazy danych - wykład 2

51 Ważna uwaga Złączenie jest definiowane jako podzbiór iloczynu kartezjańskiego tabel. Nie oznacza to jednak, że złączenie jest w praktyce realizowane przez RDBMS w ten sposób, iż najpierw tworzy się iloczyn kartezjański, a później wybiera z niego krotki spełniające warunek złączenia. Bazy danych - wykład 2

52 Znajdź imiona żeglarzy, którzy zarezerwowali łódkę nr 103
Rozw. 1: Rozw. 2: Rozw. 3: Bazy danych - wykład 2

53 Podsumowanie Model relacyjny ma ściśłe, formalnie zdefiniowane reguły zadawania zapytań, proste, ale potężne. Algebra relacji jest bardzo użyteczna do reprezentowania planów wykonania zapytań. Jedno zapytanie zazwyczaj można zrealizować na kilka sposobów. Optymalizator dobrego RDBMS powinien wybrać sposób najlepszy, ale niekiedy trzeba to zrobić ręcznie. Bazy danych - wykład 2


Pobierz ppt "2.Relacyjny model baz danych"

Podobne prezentacje


Reklamy Google