Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
1
Analiza szeregów czasowych
dr Małgorzata Radziukiewicz
2
Szereg czasowy (chronologiczny)
zbiór wartości badanej cechy lub wartości określonego zjawiska zaobserwowanych w różnych momentach (przedziałach) czasu uporządkowany chronologicznie
3
Przykłady szeregów czasowych
Szeregi czasowe dotyczące zjawisk społeczno-ekonomicznych - nakład książek i broszur w latach (w mln egz.); - wartość produkcji w pewnym przedsiębiorstwie w latach 1993 – 2002 (w mld zł.); - produkcja energii elektrycznej w latach (w mln kWh); - skup mleka w woj. poznańskim w latach (w mln litrów); - liczba zawartych małżeństw w Polsce w latach 1989 – 1993 (w tys.) itp..
4
Szeregi czasowe Szeregi czasowe dotyczące zjawisk społeczno-ekonomicznych można przedstawić w formie graficznej – elementy szeregu prezentowane są przez punkty płaszczyzny o współrzędnych (t,y), które łączy się odcinkami linii prostej
5
nakład książek i broszur w latach 1990-1997 (w mln egz.)
W badanym 8-elementowym szeregu czasowym występuje składowa systematyczna w postaci trendu oraz wahania przypadkowe. Ocena wzrokowa wykresu wskazuje, ze do opisu przebiegu zmiennej można wykorzystać funkcję liniową
6
nakład książek i broszur w latach 1990-1997 (w mln egz.)
Parametry modelu liniowego oszacowano MNK. Obliczenia związane z szacowaniem parametrów linii trendu, wyznaczeniem miar „dobroci”dopasowania, prognozy punktowej i prognozy przedziałowej, błędów prognoz zawarte są w prezentacji pt. ”Szeregi czasowe”. Wartości rzeczywiste i teoretyczne zmiennej przedstawia rysunek obok.
7
wartość produkcji w pewnym przedsiębiorstwie w latach 1993 – 2002 (w mld zł.)
Ocena wzrokowa wykresu wskazuje, ze w badanym szeregu czasowym występuje składowa systematyczna w postaci trendu rosnącego oraz wahania przypadkowe. Wzrost wartości zmiennej jest jednak coraz szybszy. W takim przypadku możemy zastosować funkcję o rosnącym tempie wzrostu, np. funkcję wykładniczą. Wykładniczą funkcję trendu sprowadza się do postaci liniowej przez logarytmowanie, a następnie szacuje się jej parametry za pomocą MNK – zob. prezentację pt. ”Wykładniczy model trendu”. Wykresy przedstawiają wartości rzeczywiste, teoretyczne i prognozy zmiennej
8
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Analiza wzrokowa wykresu wartości zmiennej prognozowanej wskazuje, że zużycie energii w firmie cechuje się liniową tendencją rozwojową oraz wahaniami sezonowymi. Zadanie: wyznaczyć prognozy zużycia energii na następne dwa kwartały 2008 roku. rok 2005 2006 2007 kw. I II IV III Y 2,8 3,7 3,0 4,6 4,2 3,5 5,0 4,7 4,0 5,3
9
Analiza szeregów czasowych
Poziom zjawiska gospodarczego, które odzwierciedla szereg czasowy, wykazuje różnego rodzaju zmiany: zmiany określające pewien ogólny kierunek (tendencję rozwojową) czyli tzw. trend; wahania cykliczne, czyli koniunkturalne (wahania o kresie dłuższym niż rok, które z grubsza odpowiadają cyklom koniunkturalnym); wahania sezonowe powtarzające się periodycznie w pewnych określonych porach każdego roku lub miesiąca; wahania nieregularne (które trudno zanalizować i ująć w pewien określony schemat): wahania katastrofalne spowodowane przez zdarzenia historyczne (wojna, katastrofy żywiołowe, epidemie); wahania przypadkowe będące wynikiem działania wielkiej liczby przyczyn ubocznych.
10
Analiza szeregów czasowych
Rys.1. Składowe szeregu czasowego Yt wahania cykliczne wahania sezonowe trend wahania przypadkowe czas
11
Analiza szeregów czasowych
Każdą obserwację szeregu czasowego możemy więc rozłożyć na trzy składniki lub czynniki: - trend (T); - sezonowość (S); - składnik przypadkowy (U). Charakter powiązań między trendem, sezonowością i zmiennością losową w szeregach: - powiązania addytywne: - i multiplikatywne: gdzie: yt - obserwacje szeregu czasowego Tt - trend i wahania cykliczne St - sezonowość Ut - zmienność o charakterze losowym (czynnik przypadkowy). Subskrypt t oznacza, że analizujemy zachowanie się zjawiska w czasie.
12
Analiza szeregów czasowych
Analiza statystyczna może dotyczyć wszystkich składników szeregu czasowego. Zwykle dąży się do wyodrębnienia poszczególnych składników szeregu czasowego i pomiaru ich wielkości – dlatego analizę szeregu czasowego określa się jako jego „dekompozycję”. W celu „dekompozycji” szeregu stosuje się wiele różnych metod statystycznych. Wyznaczenie z szeregu trendu jest najprostsze. Zadanie wyznaczenia trendu – funkcji f(t) – jest nazywane wygładzaniem (wyrównywaniem) szeregu czasowego. Możemy tego dokonać stosując jedną z dwóch metod: - metodę analityczną (modelowanie rozwoju zjawiska z uwzględnieniem analizy regresji – określamy postać funkcji charakteryzującą tendencję rozwojową szeregu i wyznaczamy jej parametry); - metodę mechaniczną.
13
Analiza szeregów czasowych
Metoda analitycznego wyrównywania szeregów polega na założeniu, że jego tendencję rozwojową (trend) da się przedstawić na wykresie za pomocą pewnej linii matematycznej np. prostej, krzywej wykładniczej itp. o określonym wzorze analitycznym. Metoda analitycznego wyrównania opiera się na dwóch rodzajach dowolnie przyjętych założeń: krzywa, którą uważa się za najlepsze wyrównanie szeregu ma określony z góry charakter analityczny; mogą istnieć różne kryteria, na podstawie których ocenia się "najlepsze dopasowanie krzywej" do wykresu danego szeregu. Jeżeli oba założenia zostaną ustalone, poszukiwana krzywa jest określona jednoznacznie i wyznaczenie jej analitycznego wzoru jest tylko sprawą rachunkową. Po wyborze postaci funkcji trendu i oszacowaniu jej parametrów, dokonuje się oceny jakości otrzymanego modelu. Model wykorzystujemy do sporządzania prognoz.
14
Analiza szeregów czasowych
Przyszłą wartość zmiennej Y uzyskuje się przez ekstrapolację funkcji trendu tj. przez podstawienie do modelu w miejsce zmiennej czasowej numeru momentu lub okresu T, na który wyznaczamy prognozę:
15
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Rozważamy przypadek, gdy w szeregu czasowym występują wahania sezonowe. Odpowiedni model musi więc zawierać parametry i zmienne charakteryzujące te wahania w poszczególnych fazach tego cyklu. Dla uproszczenia rozważań i zapisu rozpatrujemy zjawisko o rocznym cyklu wahań z kwartałami jako fazami tego cyklu.
16
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Zakładając, że funkcja trendu jest liniowa a wahania okresowe (kwartalne) nakładają się na tendencję rozwojową w sposób addytywny sformułujemy model następująco: gdzie: Xt,i (i=1,2,3,4; t=1,2,3…,n) są zmiennymi zero-jedynkowymi reprezentującymi poszczególne fazy cyklu
17
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Zmienne zero-jedynkowe: Parametry stojące przy zmiennych zero-jedynkowych (λi) charakteryzują absolutną wielkość wahań okresowych w poszczególnych kwartałach. Założenia dotyczące składnika losowego εt są takie same jak w modelu nie uwzględniającym wahań okresowych.
18
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Kolumny macierzy X są liniowo zależne
19
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
W modelu należy jedną spośród zmiennych przedstawić jako kombinację pozostałych (oznacza to eliminację tej zmiennej). Zastąpimy zmienną Xt,1 przez kombinację liniową otrzymaną z zależności:
20
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
W wyniku podstawienia model (1) przyjmie następującą postać:
21
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Model tendencji rozwojowej z liniową funkcją trendu oraz wahaniami sezonowymi przyjmie zatem postać: gdzie : yt – poziom zjawiska w okresie t, - stała, - parametr przy zmiennej czasowej, - parametr przy zmiennej Xt,i εt – składnik losowy dla okresu t
22
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Przyjmując odnośnie do rozkładu εt takie same założenia jak w klasycznym modelu regresji, uzyskujemy podstawę do szacowania parametrów funkcji trendu za pomocą MNK. dane niezbędne do obliczeń: X – macierz wartości zmiennych objaśniających (kolumny są liniowo niezależne) Y- wektor zaobserwowanych wartości zmiennej Y
23
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
wektor ocen parametrów modelu trendu z wahaniami sezonowymi obliczamy ze wzoru:
24
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Wybrane wyniki (obliczenia w Excel) wskazują, iż model jest dobrze dopasowany do danych empirycznych (parametry strukturalne są statystycznie istotne, współczynniki φ2 i V przyjmują wartości bardzo małe):
25
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Model zużycia energii elektrycznej w firmie jest postaci: interpretacja: 2,569 – jest oceną wyrazu wolnego modelu (7) na który składa się wyraz wolny i odchylenie okresowe dla I kwartału z modelu w postaci wyjściowej (5); 0,106 – ocena współczynnika trendu, wyraża tendencję rozwojową zużycia energii elektrycznej i jest interpretowany jako średni kwartalny wzrost zużycia energii w firmie (w mln kWh) w latach ; 0,994- ocena parametru stojącego przy zmiennej Xt,2 reprezentuje odchylenie sezonowe zużycia energii dla II kwartału w porównaniu z I kwartałem. Oznacza, że z tytułu wahań sezonowych zużycie energii w firmie w II kwartale każdego roku jest wyższe o 0,994 mln kWh od zużycia w I kwartale; Podobnie (jak ocenę parametru stojącego przy zmiennej Xt,2 ) interpretuje się oceny 0,187 i 1,548 parametrów przy Xt,3 oraz Xt,4 .
26
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Prognoza zużycia energii w firmie: w I kwartale 2008 roku w II kwartale 2008 roku
27
zużycie energii elektrycznej w firmie latach 2005 - 2007(w mln kWh)
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.