Pobierz prezentację
Pobieranie prezentacji. Proszę czekać
OpublikowałEdward Krawczyk Został zmieniony 6 lat temu
1
Witam Państwa na wykładzie z podstaw mikroekonomii, :)…
2
NARZĘDZIA EKONOMISTY
3
I. DANE STATYSTYCZNE JAKO NARZĘDZIE OPISU GOSPODARKI
4
Są różne rodzaje danych statystycznych...
Przyjrzymy się teraz sposobom obserwowania i opisywania gospo-darki. Przede wszystkim ekonomistom służą do tego DANE STA-TYSTYCZNE. Są różne rodzaje danych statystycznych...
5
SZEREGI CZASOWE SZEREG CZASOWY opisuje proces zmian zmien- nej; stanowi on zbiór wartości przyjmowanych przez nią w kolejnych okresach.
6
nią w kolejnych okresach.
SZEREGI CZASOWE SZEREG CZASOWY opisuje proces zmian zmien- nej; stanowi on zbiór wartości przyjmowanych przez nią w kolejnych okresach. Kurs wolnorynkowy dolara amerykańskiegoa w Polsce (1989–1992, w zł) Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 3 410 3 240 3 010 3 745 3 920 4 590 5 660 7 290 9 540 8 100 6 280 7 454 9 344 9 460 9 624 9 750 9 764 9 513 9 502 9 490 9 489 9 590 9 690 9 499 9 453 9 438 10 312 11 498 11 489 11 380 11 414 11 657 11 538 11 639 11 425 11 719 13 443 13 528 13 804 13 657 13 484 13 531 13 746 14 312 15 464 15 653 a Średni między ceną kupna a ceną sprzedaży (w „starych” złotych). Źródło: „Biuletyn Statystyczny GUS” 1991, nr 1 – 3, s. 11 i 15; 1993, nr 1, s. 19.
7
DANE PRZEKROJOWE DANE PRZEKROJOWE opisują strukturę (przek- rój) zjawiska, np. podając wartości analizowanej zmiennej dla poszczególnych osób lub grup osób.
8
- Zasadniczym zawodowym 2 296,7 54,4 165,5 512,6 845,3 1 076,3 25,9
DANE PRZEKROJOWE DANE PRZEKROJOWE opisują strukturę (przek- rój) zjawiska, np. podając wartości analizowanej zmiennej dla poszczególnych osób lub grup osób. Bezrobotni w Polsce według poziomu wykształcenia i płciA (w ty-siącach) Wyszczególnienie Ogółem Mężczyźni Kobiety Ogółem w tym: z wykształceniem: - Wyższym - Średnim: - ogólnokształcącym - zawodowym - Zasadniczym zawodowym 2 296,7 54,4 165,5 512,6 845,3 1 076,3 25,9 32,0 178,8 463,7 1 220,4 28,6 133,5 333,8 380,6 AW dniu 30 czerwca 1992 r. Źródło: Rocznik Statystyczny 1992, GUS, Warszawa 1992, s. 108.
9
SĄ RÓŻNE RODZAJE DANYCH STATYSTYCZNYCH...
Np. wyrażają one WARTOŚCI ABSOLUTNE i WARTOŚCI WZGLĘDNE.
10
WARTOŚCI ABSOLUTNE ZMIENNYCH EKONOMICZNYCH
WARTOŚCI ABSOLUTNE zmiennej są wyrażone w konkretnych jednostkach i bezpośrednio informują o jej poziomie.
11
WARTOŚCI ABSOLUTNE ZMIENNYCH EKONOMICZNYCH
WARTOŚCI ABSOLUTNE zmiennej są wyrażone w konkretnych jednostkach i bezpośrednio informują o jej poziomie. Kurs wolnorynkowy dolara amerykańskiegoa w Polsce (1989–1992, w zł) Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 3 410 3 240 3 010 3 745 3 920 4 590 5 660 7 290 9 540 8 100 6 280 7 454 9 344 9 460 9 624 9 750 9 764 9 513 9 502 9 490 9 489 9 590 9 690 9 499 9 453 9 438 10 312 11 498 11 489 11 380 11 414 11 657 11 538 11 639 11 425 11 719 13 443 13 528 13 804 13 657 13 484 13 531 13 746 14 312 15 464 15 653 a Średni między ceną kupna a ceną sprzedaży (w „starych” złotych). Źródło: „Biuletyn Statystyczny GUS” 1991, nr 1 – 3, s. 11 i 15; 1993, nr 1, s. 19.
12
WARTOŚCI WZGLĘDNE ZMIENNYCH EKONOMICZNYCH
WARTOŚĆ WZGLĘDNA zmiennej informuje o wielkości zmiany tej zmiennej.
13
WARTOŚCI WZGLĘDNE ZMIENNYCH EKONOMICZNYCH
WARTOŚĆ WZGLĘDNA zmiennej informuje o wielkości zmiany tej zmiennej. Ceny towarów i usług konsumpcyjnych w Polsce w latach 1989 – 1992 (wzrost w % w stosunku do poprzedniego miesiąca) Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 11,0 7,9 8,1 9,8 7,2 6,1 9,5 39,5 34,4 54,8 22,4 17,7 79,6 23,8 4,3 7,5 4,6 3,4 3,6 1,8 5,7 4,9 5,9 12,7 6,7 4,5 2,7 4,9 0,1 0,6 4,3 3,2 3,1 7,5 1,8 2,0 3,7 4,0 1,6 1,4 2,7 5,3 3,0 2,3 2,2 Źródło: „Biuletyn Statystyczny GUS” 1991, nr 5, s. 15 i nr 11, s. 15; 1993, nr 1, s. 18.
14
Ceny towarów i usług konsumpcyjnych w Polsce w latach 1989 – 1992
(wzrost w % w stosunku do poprzedniego miesiąca) Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 11,0 7,9 8,1 9,8 7,2 6,1 9,5 39,5 34,4 54,8 22,4 17,7 79,6 23,8 4,3 7,5 4,6 3,4 3,6 1,8 5,7 4,9 5,9 12,7 6,7 4,5 2,7 4,9 0,1 0,6 4,3 3,2 3,1 7,5 1,8 2,0 3,7 4,0 1,6 1,4 2,7 5,3 3,0 2,3 2,2 Źródło: „Biuletyn Statystyczny GUS” 1991, nr 5, s. 15 i nr 11, s. 15; 1993, nr 1, s. 18. W tej tablicy zmiany zmiennej wyrażono w formie PROCENTO-WEJ STOPY ZMIANY.
15
DYGRESJA Zmiany wyrażonej w PROCENTACH (%) nie można mylić ze zmianą wyrażoną w PUNKTACH PROCENTOWYCH (p. proc.).
16
DYGRESJA cd. Zmiana wyrażona W PROCENTACH (%) a zmiana wyrażona w PUNKTACH PROCENTOWYCH (p. proc.). Powiedzmy, że tempo inflacji wyniosło: W marcu % W kwietniu 8% Czyżby tempo inflacji wzrosło o 4%? Wszak (8%-4%)=4%.
17
DYGRESJA cd. Zmiana wyrażona W PROCENTACH (%) a zmiana wyrażona w PUNKTACH PROCENTOWYCH (p. proc.). Powiedzmy, że tempo inflacji wyniosło: W marcu % W kwietniu 8% Czyżby tempo inflacji wzrosło o 4%? Wszak (8%-4%)=4%. NIE - tempo inflacji podwoiło się, czyli wzrosło aż o 100%. Przecież wzrost z 4% (0,04) do 8% (0,08) jest wzrostem o 100%. Możemy natomiast powiedzieć, że tempo inflacji wzrosło o 4 p. proc.
18
DYGRESJA cd.: STOPĘ ZMIANY pewnej zmiennej często wyrażamy w procen-tach (np. mówimy: „średni poziom cen w kraju wzrósł o 4%”). Natomiast ZMIANY STOPY ZMIANY często (choć nie zawsze) wyrażamy w punktach procentowych (np. mówimy: „tempo inflacji wzrosło o 4 p. proc.”).
19
DYGRESJA cd.: W punktach procentowych możemy również wyrazić ZMIANĘ UDZIAŁU (ODSETKA) (np. mówimy: „poparcie dla PSL zma-lało z 12% do 9%, czyli o 3 p.proc.”). Ogólnie, w punktach procentowych wyraża się zmiany zmiennej, która jest wyrażona w procentach. KONIEC DYGRESJI
20
Inną niż stopa zmiany formą prezentacji wartości względnych
zmiennych, czyli wielkości ich zmian, są WSKAŹNIKI (INDEKSY). WSKAŹNIK (prosty) jest to liczba pozostająca w takim stosunku do stu jak zmienna z okresu, którego dotyczy, do zmiennej z ustalonego dowolnie tzw. okresu bazowego.
21
Kurs wolnorynkowy dolara amerykańskiegoa w Polsce (1989–1992, w zł)
Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 3 410 3 240 3 010 3 745 3 920 4 590 5 660 7 290 9 540 8 100 6 280 7 454 9 344 9 460 9 624 9 750 9 764 9 513 9 502 9 490 9 489 9 590 9 690 9 499 9 453 9 438 10 312 11 498 11 489 11 380 11 414 11 657 11 538 11 639 11 425 11 719 13 443 13 528 13 804 13 657 13 484 13 531 13 746 14 312 15 464 15 653 a Średni między ceną kupna a ceną sprzedaży (w „starych” złotych). Źródło: „Biuletyn Statystyczny GUS” 1991, nr 1 – 3, s. 11 i 15; 1993, nr 1, s. 19.
22
Kurs wolnorynkowy dolara amerykańskiegoa w Polsce (1989–1992, w zł)
Miesiące 1989 1990 1991 1992 Styczeń Luty Marzec Kwiecień Maj Czerwiec Lipiec Sierpień Wrzesień Październik Listopad Grudzień 3 410 3 240 3 010 3 745 3 920 4 590 5 660 7 290 9 540 8 100 6 280 7 454 9 344 9 460 9 624 9 750 9 764 9 513 9 502 9 490 9 489 9 590 9 690 9 499 9 453 9 438 10 312 11 498 11 489 11 380 11 414 11 657 11 538 11 639 11 425 11 719 13 443 13 528 13 804 13 657 13 484 13 531 13 746 14 312 15 464 15 653 a Średni między ceną kupna a ceną sprzedaży (w „starych” złotych). Źródło: „Biuletyn Statystyczny GUS” 1991, nr 1 – 3, s. 11 i 15; 1993, nr 1, s. 19. Np. wskaźnik dla sierpnia 1991 r. (X) znajdujemy, rozwiązując takie równanie: 11 380/9460 = X/100.
23
Np. wskaźnik dla sierpnia 1991 r
Np. wskaźnik dla sierpnia 1991 r. (X) znajdujemy, rozwiązując takie równanie: 11 380/9460 = X/100. Okazuje się, że X wynosi 120,3. Co to znaczy? Otóż między okresem bazowym (styczniem ’91), a okresem, którego dotyczy wskaźnik (sierpniem’91), zmienna (kurs dolara, który wzrósł z zł do zł) wzrosła TAK, JAKBY COŚ WZROSŁO OD 100 DO 120,3.
24
Kiedy wskaźnik wynosi 120,3, oznacza to, że między okresem ba-zowym, a okresem, którego dotyczy wskaźnik, zmienna zmieniła się TAK, JAKBY COŚ WZROSŁO OD 100 DO 120,3. Zauważmy! WYSTARCZY ODJĄĆ OD WSKAŹNIKA 100, ABY OTRZYMAĆ WYRAŻONĄ W PROCENTACH STOPĘ ZMIA-NY. To dlatego wielu ceni wskaźniki jako proste narzędzia opisu dynamiki (siły) zmian zmiennych. Rzut oka na wskaźnik pozwala uświadomić sobie skalę zmiany zmiennej.
25
Ze WSKAŹNIKÓW (INDEKSÓW) PROSTYCH (które już zna-my) ekonomiści robią WSKAŹNIKI (INDEKSY) ZŁOŻONE. Żeby zrozumieć ich naturę, posłużymy się BAJKĄ, !
26
Dobro Cena bieżąca (w gb) 2010 Chleb 2 8 Wino 3 9
Mieszkańcy Hipotecji konsumują tylko chleb i wino. Z każdych 10 gdybów 8 wydają na chleb, a 2 na wino. Tablica informuje o cenach bieżących chleba i wina w Hipotecji w latach Ceny w Hipotecji Źródło: „Hypothetian Bulletin of Statistic”, 2011, nr 12, s. 16. Dobro Cena bieżąca (w gb) 2000 2010 Chleb 2 8 Wino 3 9 Dla lat oblicz: a) Wskaźnik zmiany cen chleba w Hipotecji. SZUKANY WSKAŹNIK WYNOSI 400. b) wskaźnik zmiany cen wina w Hipotecji.
27
Dobro Cena bieżąca (w gb) 2010 Chleb 2 8 Wino 3 9
Mieszkańcy Hipotecji konsumują tylko chleb i wino. Z każdych 10 gdybów 8 wydają na chleb, a 2 na wino. Tablica informuje o cenach bieżących chleba i wina w Hipotecji w latach Ceny w Hipotecji Źródło: „Hypothetian Bulletin of Statistic”, 2011, nr 12, s. 16. Dobro Cena bieżąca (w gb) 2000 2010 Chleb 2 8 Wino 3 9 Dla lat oblicz: a) Wskaźnik zmiany cen chleba w Hipotecji. SZUKANY WSKAŹNIK WYNOSI 400. b) wskaźnik zmiany cen wina w Hipotecji. SZUKANY WSKAŹNIK WYNOSI 300. c) Wskaźnik zmiany cen konsumenta w Hipotecji.
28
Dobro Cena bieżąca (w gb) 2010 Chleb 2 8 Wino 3 9
Mieszkańcy Hipotecji konsumują tylko chleb i wino. Z każdych 10 gdybów 8 wydają na chleb, a 2 na wino. Tablica informuje o cenach bieżących chleba i wina w Hipotecji w latach Ceny w Hipotecji Źródło: „Hypothetian Bulletin of Statistic”, 2011, nr 12, s. 16. Dobro Cena bieżąca (w gb) 2000 2010 Chleb 2 8 Wino 3 9 Dla lat oblicz: a) Wskaźnik zmiany cen chleba w Hipotecji. SZUKANY WSKAŹNIK WYNOSI 400. b) wskaźnik zmiany cen wina w Hipotecji. SZUKANY WSKAŹNIK WYNOSI 300. c) Wskaźnik zmiany cen konsumenta w Hipotecji. Szukany wskaźnik wynosi 0, ,2.300 = 380. JAKO WAG WSKAŹNIKÓW CZĄSTKOWYCH UŻYTO UDZIAŁÓW WYDATKÓW NA POSZCZEGÓLNE DOBRA W CAŁOŚCI WYDATKÓW KONSUMENTÓW.
29
0,8.400+0,2.300 = 380. Szukany wskaźnik wynosi :
Jako wag wskaźników cząstkowych użyto udziałów wydatków na poszczególne dobra w całości wydatków konsumentów. UWAGA! Zastosowanie innych wag spowodowałoby, że wskaź-nik złożony nie odzwierciedlałby wpływu zmian cen na koszty utrzymania przeciętnej hipotecjańskiej rodziny.
30
Właśnie w ten sposób urzędy statystyczne na całym świecie liczą tempo inflacji.
Obserwowane są zmiany cen dóbr z koszyka dóbr-reprezen-tantów (w Polsce ok dóbr). Wagi oblicza się w trakcie badań budżetów gospodarstw do-mowych.
31
II. WARTOŚĆ NOMINALNA A WARTOŚĆ REALNA
32
ZAPAMIĘTAJMY! ZMIENNA EKONOMICZNA JEST NOMINALNA, jeśli jej war-tość zmierzono jednostkami pieniądza o sile nabywczej (wartości) z okresu, do którego zmienna ta się odnosi. ZMIENNA EKONOMICZNA JEST REALNA, jeśli jej wartość zmierzono jednostkami pieniądza o sile nabywczej (wartości) z inne-go okresu niż ten, do którego ta zmienna się odnosi.
33
ZADANIE W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę?
34
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? W końcu stycznia to coś kosztowało o 20% więcej, czyli 1,2 zł 1,0 zł+20%•1 zł=1,0 zł•(1+20%)=1,2zł.
35
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? W końcu stycznia to coś kosztowało o 20% więcej, czyli 1,2 zł 1,0 zł+20%•1 zł=1,0 zł•(1+20%)=1,2zł. W końcu lutego (czyli na początku marca) w porów-naniu z końcem stycznia cena tego czegoś wzrosła o 25%, czyli do 1,2zł+25%1,2zł=1,2zł•(1+25%)=1,5zł.
36
1,0zł(1+20%)(1+25%) = 1,5 zł. 1,2zł+25%1,2zł=1,2zł•(1+25%)=1,5zł.
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? W końcu stycznia to coś kosztowało o 20% więcej, czyli 1,2 zł 1,0 zł+20%•1 zł=1,0 zł•(1+20%)=1,2zł. W końcu lutego (czyli na początku marca) w porów-naniu z końcem stycznia cena tego czegoś wzrosła o 25%, czyli do 1,2zł+25%1,2zł=1,2zł•(1+25%)=1,5zł. Innymi słowy: w końcu lutego to coś kosztowało: 1,0zł(1+20%)(1+25%) = 1,5 zł.
37
1,0zł(1+20%)(1+25%) = 1,5 zł. Zauważ! Tą „techniką węża” opisujemy proces drożenia początkowo kosztującej 1 porcji dobra w trakcie kolejnych podokresów, w których trwa in-flacja o znanym tempie.
38
1,0zł(1+20%)(1+25%) = 1,5 zł. Zauważ! Tą „techniką węża” opisujemy proces drożenia początkowo kosztującej 1 porcji dobra w trakcie kolejnych podokresów, w których trwa in-flacja o znanym tempie. Uzyskany wynik jest równy (1+x), gdzie x jest tem-pem inflacji w okresie składającym się z tych wszystkich podokresów.
39
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł.
40
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł. b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca?
41
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł. b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca? 1/1=1 1/[1,0zł(1+20%)(1+25%)] = 1/1,5
42
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł. b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca? 1/1=1 1/[1,0zł(1+20%)(1+25%)] = 1/1,5 Na taką część: 1,0 zł/1,5 zł równa się 2/3, czyli 66, %.
43
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł. b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca? Na taką część: 1,0 zł/1,5 zł równa się 2/3, czyli 66, %.
44
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia). a) Ile musisz – przeciętnie – zapłacić, aby 1 marca kupić to, co 1 stycznia mogłeś kupić za złotówkę? 1,0zł(1+20%)(1+25%) = 1,5 zł. b) Na jaką część tego, co wtedy mogłeś sobie kupić za złotów-kę, mając nadal złotówkę możesz sobie pozwolić 1 marca? Na taką część: 1,0 zł/1,5 zł równa się 2/3, czyli 66, %. c) Co powiesz o: (i) „sile nabywczej” Twojego dochodu z 1 mar-ca, który nie zmienił się od 1 stycznia? Użyj także nazw: (ii) „wartość realna”, (iii) „w cenach stałych z ...” i „w cenach bieżących z ...”.
45
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia).
c) Co powiesz o: (i) „sile nabywczej” Twojego dochodu z 1 marca, który nie zmienił się od 1 stycznia? Użyj także nazw: (ii) „wartość realna”, (iii) „w cenach stałych z ...” i „w cenach bieżących z ...”. (i) Zmalała o 1/3 (za KAŻDĄ złotówkę tego dochodu 1 marca mogłem kupić – przeciętnie - o 1/3 mniej niż 1 stycznia.
46
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia).
c) Co powiesz o: (i) „sile nabywczej” Twojego dochodu z 1 marca, który nie zmienił się od 1 stycznia? Użyj także nazw: (ii) „wartość realna”, (iii) „w cenach stałych z ...” i „w cenach bieżących z ...”. (i) Zmalała o 1/3 (za KAŻDĄ złotówkę tego dochodu 1 marca mogłem kupić – przeciętnie - o 1/3 mniej niż 1 stycznia. (ii) Wartość realna każdej złotówki tego dochodu wynosi 0,(6) groszy z 1 stycznia.
47
W styczniu inflacja wyniosła 20%, a w lutym 25% (względem końca stycznia).
c) Co powiesz o: (i) „sile nabywczej” Twojego dochodu z 1 marca, który nie zmienił się od 1 stycznia? Użyj także nazw: (ii) „wartość realna”, (iii) „w cenach stałych z ...” i „w cenach bieżących z ...”. (i) Zmalała o 1/3 (za KAŻDĄ złotówkę tego dochodu 1 marca mogłem kupić – przeciętnie - o 1/3 mniej niż 1 stycznia. (ii) Wartość realna każdej złotówki tego dochodu wynosi 0,(6) groszy z 1 stycznia. (iii) W cenach bieżących („nominalnie”) ten dochód był wart na początku marca tyle, ile wynosił (np zł). Zaś w ce-nach stałych z początku stycznia („realnie”) jego wartość wy-nosiła tylko 2/3 kwoty 2500 zł, czyli 1666,(6) zł.
48
ZADANIE Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat?
49
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? 1→1•(1+10%)•(1+10%)
50
1→1•(1+10%)•(1+10%) 1/1=1 1/[1•(1+10%)•(1+10%)] = 1/1,21
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? 1→1•(1+10%)•(1+10%) 1/1=1 1/[1•(1+10%)•(1+10%)] = 1/1,21
51
1→1•(1+10%)•(1+10%) 1/1=1 1/[1•(1+10%)•(1+10%)] = 1/1,21
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? 1→1•(1+10%)•(1+10%) 1/1=1 1/[1•(1+10%)•(1+10%)] = 1/1,21 500000zł/1,21≈413233,14 zł.
52
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? 1/1→1/[1•(1+10%)•(1+10%)] = 1/1,21 zł/1,21≈ ,14 zł. b) Czy zatem rzeczywiście „nic nie tracisz, czekając”?
53
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? zł/1,21≈ ,14 zł. b) Czy zatem rzeczywiście „nic nie tracisz, czekając”? Jak się okazuje, inflacja sprawiła, że - nie sprzedając mieszkania przed dwoma laty - straciłeś zł (o sile nabywczej sprzed 2 lat)!
54
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? zł/1,21 ≈ ,14 zł. b) Czy zatem rzeczywiście „nic nie tracisz, czekając”? Jak się okazuje, inflacja sprawiła, że - nie sprzedając mieszkania przed dwoma laty - straciłeś zł (o sile nabywczej sprzed 2 lat)!
55
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? zł/1,21 b) Czy zatem rzeczywiście „nic nie tracisz, czekając”? Jak się okazuje, inflacja sprawiła, że - nie sprzedając mieszkania przed dwoma laty - straciłeś zł (o sile nabywczej sprzed 2 lat)! c) O ile procent musiałbyś podnieść cenę swojego M4, aby unik-nąć TYCH strat?
56
Od dwóch lat sprzedajesz mieszkanie, oglądających jest wielu, ale jakoś nic z tego nie wynika. Jedno jest jasne – nie obniżysz ce-ny zł to nie jest za dużo za 46 m2 w cegle i z widną kuch-nią na Górnym Mokotowie! W końcu nic nie tracisz, czekając, a im kiedyś puszczą nerwy. Wszystko drożeje! W radiu mówili, ze inflacja w ubiegłym i w tym roku wynosiła po 10%. Ile wynosi cena Twojego mieszkania wyrażona w złotych sprzed dwóch lat? zł/1,21 b) Czy zatem rzeczywiście „nic nie tracisz, czekając”? Jak się okazuje, inflacja sprawiła, że - nie sprzedając mieszkania przed dwoma laty - straciłeś zł (o sile nabywczej sprzed 2 lat)! c) O ile procent musiałbyś podnieść cenę swojego M4, aby unik-nąć TYCH strat? W ciągu dwóch lat ceny wzrosły z umownego po-ziomu 1 do (1+10%)•(1+10%)=1,21, czyli o 21%. Uniknąłbyś strat, o których mowa w podpunkcie (b), jeśli podniósłbyś cenę mieszkania także o 21%, czyli do zł•(1+10%)•(1+10%)= zł, .
57
III. WARTOŚĆ A CZAS
58
Co to jest STOPA PROCENTOWA?
Na okres (rok) pożyczasz komuś złotowkę. Po upływie okresu (ro-ku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł Pomyśl o stosunku wynagrodzenia za pożyczenie komuś złotowki do wysokości pożyczonej kwoty. 0,1 zł/1 zł = 0,1 = 10%. STOPA PROCENTOWA JEST TO STOSUNEK WYNA- GRODZENIA ZA UDZIELENIE POŻYCZKI DO WY- SOKOŚCI TEJ POŻYCZKI.
59
Co to jest STOPA PROCENTOWA?
Na okres (rok) pożyczasz komuś złotowkę. Po upływie okresu (ro-ku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł Pomyśl o stosunku wynagrodzenia za pożyczenie komuś złotowki do wysokości pożyczonej kwoty. 0,1 zł/1 zł = 0,1 = 10%. STOPA PROCENTOWA JEST TO STOSUNEK WYNA- GRODZENIA ZA UDZIELENIE POŻYCZKI DO WY- SOKOŚCI TEJ POŻYCZKI. ZAUWAŻ: WYNAGRODZENIE WYPŁACANE JEST PO UPŁYWIE OKRESU, KTÓREGO DOTYCZY PO-ŻYCZKA!
60
NOMINALNA A REALNA STOPA PROCENTOWA
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. Ta stopa procentowa zasługuje na miano NOMINALNEJ (in), ponie-waż obliczając ją, nie uwzględniliśmy - ewentualnych - zmian war-tości pieniądza spowodowanych inflacją. W szczególności, nie uwzględniliśmy wpływu tych zmian na wartość wynagrodzenia.
61
Na okres (np. rok) pożyczasz komuś złotowkę
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy?
62
UPROSZCZONY WARIANT ODPOWIEDZI:
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy? UPROSZCZONY WARIANT ODPOWIEDZI: Wynagrodzenie pożyczkodawcy wyniosło 0,05 zł. Żeby w momencie zwrotu pożyczonej złotówki i wypłaty wy-nagrodzenia przeciętny pożyczkodawca mógł kupić to, co mógł sobie kupić za złotówkę w momencie udzielania pożycz-ki, musi wydać nie 1,0 zł, lecz 1,05 zł. Ponieważ jest mu łącz- nie zwracane 1,1 zł, jego wynagrodzenie wynosi (1,1-1,05) zł = 0,05 zł.
63
1gr→1gr•(1+5%) 1gr/1gr=1 1gr/[1gr•(1+5%)] = 1gr/1,05gr
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy? DOKŁADNY WARIANT ODPOWIEDZI: 1gr→1gr•(1+5%) 1gr/1gr=1 1gr/[1gr•(1+5%)] = 1gr/1,05gr 5 gr•1gr/1,05gr = 5gr/1,05 ≈ 0,0476 gr. Wartość wynagrodzenia wyrażam oto w groszach o sile na-bywczej równej sile nabywczej pożyczanych groszy…
64
0,0476 zł/1,0zł ≈4,76%. DOKŁADNY WARIANT ODPOWIEDZI:
Na okres (np. rok) pożyczasz komuś złotowkę. Po upływie tego okresu (roku) dostajesz z powrotem 1,1 zł. 1 zł → 1,1 zł, więc 0,1 zł/1 zł = 0,1 = 10%. A teraz obliczymy REALNĄ stopę procentową (ir). Powiedzmy, że w okresie, na który opiewała pożyczka, ceny wzrosły o π=5%... Ile w takiej sytuacji wyniosło wynagrodzenie pożyczkodawcy? DOKŁADNY WARIANT ODPOWIEDZI: A zatem realne wynagrodzenie za udzielenie pożyczki wynosi ≈0,0476 zł. W efekcie szukana realna stopa procentowa wynosi: 0,0476 zł/1,0zł ≈4,76%.
65
W praktyce i tak najczęściej:
ir = in – π.
66
Niekiedy obliczenie stopy procentowej nie jest łatwe…
67
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok?
68
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł.
69
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku?
70
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł.
71
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodze-nie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia.
72
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodze-nie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki.
73
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodze-nie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki. d) Ile wynosi stopa procentowa w przypadku pożyczki A? Odpowiedź uzasadnij.
74
ZADANIE Oto pożyczka A: pożyczasz od kogoś 4 zł na rok w zamian za wynagrodzenie równe 1 zł, które jest płatne z góry. a) Jaką kwotą dysponujesz przez rok? 3 zł. b) Ile zwracasz po roku? 4 zł. c) Opisz pożyczkę B, której udzielenie (i zaciągniecie) jest równie opłacalne jak udzielenie (i zaciągnięcie) pożyczki A; od pożyczki A niech różni się ona tylko tym, że wynagrodze-nie jest wypłacane w momencie jej zwrotu, a nie w momencie jej udzielenia. Pożyczam 3 zł na rok w zamian za wynagrodzenie 1 zł płatne w momencie zwrotu pożyczki. d) Ile wynosi stopa procentowa w przypadku pożyczki A? Odpowiedź uzasadnij. 1 zł/3 zł = 33,(3)%. Wszak właśnie tyle wynosi stopa procentowa w przypadku pożyczki B (pożyczka A jest tożsama z pożyczką B; w obu przypadkach kwota udostępniana pożyczkobiorcy i wynagro-dzenie dla pożyczkodawcy są takie same).
75
KOMENTARZ Zadanie ułatwia zrozumienie, że cena pożyczki (czyli stopa procentowa) zależy m.in. od rozkładu w czasie płaconych przez pożyczkobiorcę odsetek. Oferowane pożyczki różnią się także pod innymi względami (np. udzielając kredytu, poza odsetkami, banki często pobierają prowizje i inne opłaty). Utrudnia to pożycz-kobiorcom ustalenie prawdziwego kosztu pożyczki…
76
KOMENTARZ CD. Zadanie ułatwia zrozumienie, że cena pożyczki (czyli stopa procentowa) zależy m.in. od rozkładu w czasie płaconych przez pożyczkobiorcę odsetek. Oferowane pożyczki różnią się także pod innymi względami (np. udzielając kredytu, poza odsetkami, banki często pobierają prowizje i inne opłaty). Utrudnia to pożycz-kobiorcom ustalenie prawdziwego kosztu pożyczki… W Polsce prawo wymaga podawania przez oferujące kredyt banki i inne instytucje (np. sklepy prowadzące sprze-daż ratalną) tzw. RZECZYWISTEJ ROCZNEJ STOPY OP-ROCENTOWANIA (RRSO), wyliczonej w sposób określony w ustawie o kredycie konsumenckim *. Im wyższa jest RRSO, tym droższy jest proponowany kredyt. W uproszczeniu, RRSO uwzględnia wszystkie koszty kredytu, a także ich rozkład w czasie, co ma ułatwić pożycz-kobiorcom porównanie ceny różnych pożyczek. * Zob. Ustawa z dnia 12 maja 2011 r. o kredycie konsumenc-kim (Dz. U. z 2014 r. poz. 1497, z późniejszymi zmianami).
77
FUTURE VALUE, CZYLI DO JAKIEJ WARTOŚCI UROŚNIE POŻYCZONA DZIŚ NA PROCENT KWOTA PIENIĄDZA?
78
1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł.
79
[1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.
1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.
80
[1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł.
1 zł+1 zł•i = 1 •(1+ i)1 zł Tyle pieniędzy zwróci wierzycielowi dłużnik, który na rok pożyczył 1 zł. Po drugim roku wierzycielowi należy się tyle, ile należało mu się po 1. roku plus odsetki od tej kwoty za drugi rok: [1•(1+ i) zł+i•1•(1+i)]zł = [1•(1+i)•(1+i)]zł = 1•(1+i)2] zł. Zauważmy, że po 2. roku wierzyciel dostaje nie tyl-ko oprocentowanie pożyczonego 1 zł, lecz także op-rocentowanie odsetek, których zwrotu nie zażądał po upływie 1. roku. Są zatem naliczane odsetki od odsetek. Nic dziwnego, że taki sposób liczenia na-zywa się PROCENTEM SKŁADANYM.
81
[1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.
Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.
82
[1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł.
Po trzecim roku wierzycielowi należy się tyle, ile należało mu się po 2. roku plus odsetki od tej kwoty za trzeci rok: [1•(1+ i)2 +i•1•(1+i)2]zł = [1•(1+i)2•(1+i)]zł = 1•(1+i)3] zł. I tak dalej. Rozumowanie to możemy uogólnić, mówiąc, że po n latach wartość pożyczonego 1 zł zwiększa się do 1•(1+i)n zł. Wartość A zł rośnie zaś do An = A•(1+i)n zł. Np. jeśli stopa procentowa wynosi 10%, po 3 latach dzisiejsza kwota 1000zł urośnie do 1000•(1+i)3zł = 1000•1,331zł = 1331zł.
83
Czy jest możliwa operacja odwrotna? Nic prost-szego!
A zatem w gospodarce, w której cena pożyczek, czyli stopa pro-centowa wynosi i, mając dziś kwotę A, za n lat możemy się stać właścicielami kwoty An=A•(1+i)n (An to po angielsku future va-lue).Wystarczy ulokować pieniądze w banku lub kupić pa-piery wartościowe. Czy jest możliwa operacja odwrotna? Nic prost-szego!
84
Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości:
A = An•[1/(1+i)n] zł.
85
A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.
Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości: A = An•[1/(1+i)n] zł. Przy stopie procentowej i kwota, którą za n lat musimy zwrócić, wyniesie: A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.
86
A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł.
Jeśli jesteśmy pewni, że za n lat nasz dochód wyniesie An zł, możemy zaciągnąć pożyczkę w wysokości: A = An•[1/(1+i)n] zł. Przy stopie procentowej i kwota, którą za n lat musimy zwrócić, wyniesie: A•(1+i)nzł=[An•[1/(1+i)n]•(1+i)n]zł=An zł. Tyle przecież będziemy mieli! W TEN SPOSÓB ZA-MIENIAMY PIENIĄDZE, JAKIE NA PEWNO DOSTANIEMY ZA N LAT, NA GOTÓWKĘ, KTÓRĄ MOŻEMY PŁACIC JUŻ DZISIAJ.
87
A = An•[1/(1+i)n] zł. Kwotę A z naszego przykładu ekonomiści nazywają war-tością zaktualizowaną (ang. present value) kwoty An. Za-uważmy, że wartość zaktualizowana danej kwoty z przy-szłości zmienia się odwrotnie niż stopa procentowa.
88
A = An•[1/(1+i)n] zł. Kwotę A z naszego przykładu ekonomiści nazywają war-tością zaktualizowaną (ang. present value) kwoty An. Za-uważmy, że wartość zaktualizowana danej kwoty z przy-szłości zmienia się odwrotnie niż stopa procentowa. WARTOŚĆ ZAKTUALIZOWANA PRZYSZŁEJ KWO- TY TO SUMA, KTÓRA PRZY DANEJ STOPIE PRO- CENTOWEJ – DZIĘKI DZIAŁANIU PROCENTU SKŁADANEGO – ZMIENI SIĘ W TĘ PRZYSZŁĄ KWOTĘ.
89
An = A•(1+i)n zł (ang. future value).
A = An•[1/(1+i)n] zł (ang. present value).
90
ZADANIE Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić?
91
czas • • • • ??? 1100 1210 1331 Założenia: in=10% π = 0.
Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić? czas • • • • ??? 1100 1210 1331 Założenia: in=10% π = 0.
92
1100zł•1/[(1+i)1]+1210zł•1/[(1+i)2]+1331zł •1/[(1+i)3]
Po pierwszym roku eksploatacja pewnej maszyny (po odliczeniu wszystkich kosztów!) da czysty zysk równy Po drugim roku zysk wyniesie 1210, a po trzecim – Nie ma innych zysków i kosztów; nie ma ryzyka i inflacji. Stopa procentowa wynosi 10%. Cena maszyny wynosi Czy warto ją kupić? czas • • • • ??? 1100 1210 1331 Założenia: in=10% π = 0. 1100zł•1/[(1+i)1]+1210zł•1/[(1+i)2]+1331zł •1/[(1+i)3] = 1000 zł zł zł = 3000 zł.
93
IV. O ZWIĄZKACH ZMIENNYCH I MODELOWANIU
94
Ekonomistów bardzo interesują ZWIĄZKI OBSERWOWANYCH ZMIENNYCH (np
Ekonomistów bardzo interesują ZWIĄZKI OBSERWOWANYCH ZMIENNYCH (np. poziomu bezrobocia i wielkości inflacji). Szcze-gólnie zależy im na odkryciu związków przyczynowych zmiennych. Znając te związki, można stworzyć UPROSZCZONY OBRAZ PROCESU GOSPODARCZEGO, czyli jego MODEL (np. słowny, rysunkowy, matematyczny, mechaniczny). MODEL przedstawia za-leżność części tego procesu, ułatwiając myślenie i działanie.
95
Kiedy właściwie zaobserwowaną regularność zmian zmiennych uz-najemy za ZWIĄZEK PRZYPADKOWY, a kiedy za ZWIĄZEK PRZYCZYNOWY?
96
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów.
97
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. Związek przyczynowy.
98
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. Związek przyczynowy. b) Zauważyłem, że liczba bocianów i liczba dzieci, które rodzą się w tej wsi, zmieniają się w tym samym kierunku.
99
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. Związek przyczynowy. b) Zauważyłem, że liczba bocianów i liczba dzieci, które rodzą się w tej wsi, zmieniają się w tym samym kierunku. Przypadek.
100
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. Związek przyczynowy. b) Zauważyłem, że liczba bocianów i liczba dzieci, które rodzą się w tej wsi, zmieniają się w tym samym kierunku. Przypadek. c) Jakim kryterium kierowałeś się, udzielając odpowiedzi? Odpo-wiedz szczegółowo.
101
ZADANIE W którym z następujących przypadków chodzi tylko o przypadek, a w którym o związek przyczynowy? a) Już kilka razy wzrostowi cen samochodów w Polsce towarzyszył spadek liczby kupowanych przez Polaków nowych samochodów. Związek przyczynowy. b) Zauważyłem, że liczba bocianów i liczba dzieci, które rodzą się w tej wsi, zmieniają się w tym samym kierunku. Przypadek. c) Jakim kryterium kierowałeś się, udzielając odpowiedzi? Odpo-wiedz szczegółowo. Istotne dla mnie było to, czy zaobserwowanej regularność zmian jest, czy też nie jest wyjaśniana przez wiarygodną teorię, zgodnie z którą jedna zmienna stanowi przyczynę, a druga - skutek.
102
PRZYKŁAD: W wyniku obserwacji gospodarki powstały dwa szeregi czasowe, opisujące zmiany produkcji i bezrobocia w pewnym kraju w pew-nym okresie. Analiza tych danych ujawniła taki związek produkcji i bezro-bocia: „ILEKROĆ PRODUKCJA SIĘ ZWIĘKSZA, Z PEWNYM OPÓŹNIENIEM ZMNIEJSZA SIĘ BEZROBOCIE”.
103
Ut = -1/2•Yt-1, PRZYKŁAD:
W wyniku obserwacji gospodarki powstały dwa szeregi czasowe, opisujące zmiany produkcji i bezrobocia w pewnym kraju w pew-nym okresie. Analiza tych danych ujawniła taki związek produkcji i bezro-bocia: „ILEKROĆ PRODUKCJA SIĘ ZWIĘKSZA, Z PEWNYM OPÓŹNIENIEM ZMNIEJSZA SIĘ BEZROBOCIE”. W efekcie stworzono matematyczny model tego procesu: Ut = -1/2•Yt-1, gdzie: Ut – zmiana wielkości stopy bezrobocia w okresie t, (w p.proc.); Yt-1 – zmiana wielkości produkcji w okresie t-1 (w %).
104
Ut = -1/2•Yt-1, PRZYKŁAD:
W wyniku obserwacji gospodarki powstały dwa szeregi czasowe, opisujące zmiany produkcji i bezrobocia w pewnym kraju w pew-nym okresie. Analiza tych danych ujawniła taki związek produkcji i bezro-bocia: „ILEKROĆ PRODUKCJA SIĘ ZWIĘKSZA, Z PEWNYM OPÓŹNIENIEM ZMNIEJSZA SIĘ BEZROBOCIE”. W efekcie stworzono matematyczny model tego procesu: Ut = -1/2•Yt-1, gdzie: Ut – zmiana wielkości stopy bezrobocia w okresie t, (w p.proc.); Yt-1 – zmiana wielkości produkcji w okresie t-1 (w %). Znając ten związek, Prezydent doprowadził do wzrostu produkcji o 10%, co spowodowało spadek stopy bezrobocia o 5 p. proc. (z 15% do 10%). W efekcie Partia Prezydenta wygrała wybory! Opisujące związki zmiennych ekonomicznych modele ekono-miczne są bardzo ważnym narzędziem ekonomistów!
105
O PUŁAPKACH CZYHAJĄCYCH NA POSZUKIWACZY ZWIĄZKÓW PRZYCZYNOWYCH…
106
„PROBLEM PRZYPADKOWEGO ZWIĄZKU” może sprawić, że za przyczynę zdarzenia błędnie uznamy inne zdarzenie, które jedynie przypadkowo towarzyszyło temu pierwszemu zdarzeniu.
107
„PROBLEM PRZYPADKOWEGO ZWIĄZKU” może sprawić, że za przyczynę zdarzenia błędnie uznamy inne zdarzenie, które jedynie przypadkowo towarzyszyło temu pierwszemu zdarzeniu. „Kobieta w czarni przeszła obok chaty i krowy straciły mleko”.
108
„PROBLEM ODWRÓCONEJ PRZYCZYNOWOŚCI” może spra-wić, że uznamy skutek za przyczynę, a przyczynę za skutek.
109
„PROBLEM ODWRÓCONEJ PRZYCZYNOWOŚCI” może spra-wić, że uznamy skutek za przyczynę, a przyczynę za skutek. „Pianie koguta powoduje wschód słońca”.
110
„PROBLEM UKRYTEJ ZMIENNEJ” może sprawić, że…
…za przyczynę zdarzenia A błędnie uznamy jedy-nie towarzyszące zdarzeniu A zdarzenie B, w sytu-acji, w której zarówno zdarzenie A, jak i zdarzenie B jest powodowane przez (ukrytą) wspólną przy-czynę C.
111
„PROBLEM UKRYTEJ ZMIENNEJ” może sprawić, że…
…za przyczynę zdarzenia A błędnie uznamy jedy-nie towarzyszące zdarzeniu A zdarzenie B, w sytu-acji, w której zarówno zdarzenie A, jak i zdarzenie B jest powodowane przez (ukrytą) wspólną przy-czynę C. „To nie przypadek, że w domach zmarłych na raka płuc znajdujemy tak wiele zapalniczek”.
112
„PROBLEM UKRYTEJ ZMIENNEJ” może sprawić, że…
…za przyczynę zdarzenia A błędnie uznamy jedy-nie towarzyszące zdarzeniu A zdarzenie B, w sytu-acji, w której zarówno zdarzenie A, jak i zdarzenie B jest powodowane przez (ukrytą) wspólną przy-czynę C. „To nie przypadek, że w domach zmarłych na raka płuc znajdujemy tak wiele zapalniczek”. „To nie przypadek, że wśród bezrobotnych w tym kraju jest tak wielu chorych na depresję i samobójców”.
113
„PROBLEM UKRYTEJ ZMIENNEJ” może sprawić, że…
…za przyczynę zdarzenia A błędnie uznamy jedy-nie towarzyszące zdarzeniu A zdarzenie B, w sytu-acji, w której zarówno zdarzenie A, jak i zdarzenie B jest powodowane przez (ukrytą) wspólną przy-czynę C. „To nie przypadek, że w domach zmarłych na raka płuc znajdujemy tak wiele zapalniczek”. „To nie przypadek, że wśród bezrobotnych w tym kraju jest tak wielu chorych na depresje i samobójców”. NA POSZUKUJĄCYCH ZWIĄZKÓW PRZYCZYNOWYCH EKONOMISTÓW CZYHAJĄ ROZMAITE PUŁAPKI…
Podobne prezentacje
© 2024 SlidePlayer.pl Inc.
All rights reserved.