Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

CZERNOBYL.

Podobne prezentacje


Prezentacja na temat: "CZERNOBYL."— Zapis prezentacji:

1 CZERNOBYL

2 Reaktor wodny ciśnieniowy PWR (Pressurized Water Reactor)
Moc reaktora PWR regulowana jest przez zmianę stężenia boru (pod postacią kwasu borowego) w wodzie w obiegu pierwotnym. Grafitowe pręty regulacyjne stosowane są jedynie podczas rozruchu i wyłączania reaktora.

3 Реактор Большой Мощности Канальный
REAKTOR RBMK Реактор Большой Мощности Канальный (Reaktor Bolszoj Moszcznosti Kanalnyj, Reaktor Kanałowy Wielkiej Mocy)

4 REAKTORY LWR I RBMK Porównanie klasycznego reaktora zbiornikowego LWR i kanałowego RBMK: Moderatorem LWR jest woda pod ciśnieniem, podczas gdy rdzeń RBMK moderuje palny grafit W RBMK dodatnia reaktywność przestrzeni parowych mogła spowodować skok mocy i eksplozję Mechanizm opuszczania prętów w RBMK był o wiele wolniejszy niż w LWR Na dodatek, RBMK nie posiadał budowli ochronnej

5 PRZED KATASTROFĄ 1. Część energii produkowanej przez reaktor przeznaczona jest na potrzeby własne (np.. pompy chłodzące, aparatura kontrolna). 2. Wyłączenie reaktora – zasilanie przejmują agregaty 3. Czas włączenia agregatów 60 sekund, podtrzymanie przez blok energetyczny 15 sekund brakuje 45 sekund. 4. Wyjście- szybsze agregatu lub zmiany w bloku energetycznym wybrano zmiany 5. Eksperyment miał sprawdzić czy po zmianach czas podtrzymania przez blok wynosi 60 sekund.

6 ZAŁOŻENIA EKSPERYMENTU
1. Eksperyment miał polegać na znacznym zmniejszeniu mocy reaktora, następnie na zablokowaniu dopływu pary do turbin generatorów i mierzeniu czasu ich pracy po odcięciu w taki sposób zasilania. 2. W ramach przygotowań do testu technicy wyłączyli niektóre z systemów kontroli pracy reaktora, m.in. system automatycznego wyłączania reaktora w razie awarii.

7 PRZEBIEG EKSPERYMENTU
Czas 25 kwietnia 1986 roku. 2. Wykonać miała przeszkolona dzienna zmiana. 3. Rozpoczęto redukcje mocy reaktora po osiągnięci 50% mocy awaria innej elektrowni wymusiła przerwanie eksperymentu. 4. Zezwolenie wydano o 2304 – eksperyment przeprowadzała nieprzygotowana zmiana nocna. 5. Planowana redukcja mocy reaktora z 3,2 GW do 0.7 – 1 GW. Operator Leonid Toptunow (3 miesięczny staż !!!) zredukował moc do 10 MW nastąpiło „zatrucie ksenonowe” reaktora

8 ZATRUCIE KSENONOWE REAKTORA

9 KATASTROFA Prawidłowe postępowanie – pozostawienie reaktora w stanie
wygaszonym przez 24 godziny. Postępowanie obsługi zwiększanie mocy reaktora przez wysuniecie prętów kontrolnych. - zwiększenie obiegu wody chłodzącej- spadek mocy – dalsze wysunięcie prętów kontrolnych Skrajnie niestabilny stan reaktora – system awaryjny powinien reaktor wyłączyć ale wcześniej sam został wyłączony

10 KATASTROFA Godzina 01:23:04 początek eksperymentu- turbiny zwalniają, przepływ wody chłodzącej maleje, rośnie ilość pary moc reaktora gwałtownie rośnie. Godzina 01:23:40 Próba uruchomienia procedury AZ-5 (wygaszenie reaktora) Wsuwane powoli pręty wypychają chłodziwo a ich grafitowe końcówki działają jak moderator zwiększając moc reaktora. Kanały paliwowe popękały, blokując pręty kontrolne. Godzina 01:23:47 Moc reaktora osiąga 30 GW (nominalna 3,2GW) Godzina 01:24:00 Pierwszy wybuch. Para wodna wysadza 1200 tonową osłonę biologiczną, woda styka się z rozżarzonym grafitem o temp C następuje termoliza wody. Następuje drugi wybuch ( eksplozja powstałego wodoru i tlenu) wtargniecie do reaktora powietrza i zapłon kilku ton grafitu.

11 PO KATASTROFIE Poziom promieniowania w budynku elektrowni dochodził do 200 Gy / h Akcja gaśnicza trwała 9 dni 134 osoby zostały napromieniowane, zmarło 28 Po katastrofie wyznaczono zamkniętą strefę buforową mierzącą 2,5 tysiąca km² Średnia dawka na całe ciało, jaką otrzymał średnio mieszkaniec Polski w wyniku awarii czarnobylskiej, w ciągu roku od awarii wyniosła 0,3 mSv, a przewidywana dawka jaką otrzyma w ciągu 70 lat 0,9 mSv, w tym czasie dawka promieniowania naturalnego wyniesie około 170 mSv[

12 FUKUSHIMA

13 Schemat rdzenia reaktora typu BWR. 1 – pręt awaryjny
2 – pręt sterujący 3 – pręt paliwowy 4 – osłona biologiczna 5 – odprowadzenie pary 6 – doprowadzenie wody 7 – osłona cieplna

14 PRZED KATASTROFĄ Trzęsienie ziemi o sile 9 stopni w skali Richtera nastąpiło 11 marca 2011 roku o 14:46 JST (5:46 UTC). Hipocentrum położone było pod dnem Oceanu Spokojnego, na głębokości 24 lub 32 km, około 130 kilometrów na wschód od wybrzeża Tōhoku, na którym znajduje się elektrownia Fukushima I

15 PRZED KATASTROFĄ Wyłączono reaktory – zasilanie pomp chłodzących z generatorów diesla. Sieć energetyczna uszkodzona przez trzęsienie ziemi. Fala tsunami przelewa się przez mur oporowy zalewa generatory i zbiorniki paliwa. Godzina 15:41 Po awarii generatorów diesla, systemy kontroli były zasilane przez baterie działające maksymalnie przez 8 godzin Wieczorem zaczynają się problemy z chłodzeniem rdzeni.

16 KATASTROFA Ogłoszono ewakuację w promieniu 2 km
12 marca rano wypuszczanie pary wodnej (skażonej) 15:36 wybuch wodoru w budynku reaktora 1 Promień ewakuacji 20 km 20:20 chłodzenie reaktora nr 1 wodą morską 13 marca wypuszczanie pary znad reaktora nr 3 14 marca 11:01 wybuch wodoru w reaktorze 3, awaria chłodzenia w reaktorze nr 2 rozpoczecie chłodzenia wodą morską

17 KATASTROFA 15 marca kolejny pożar bloku nr 4 poziom promieniowania przy bramie wzrasta do prawie 12 mSv/h 16 marca pożary w budynkach reaktorów 3 i 4 promieniowanie wzrasta do 50 mSv/h 17 marca próby zchłodzenia reaktora nr 3 Kolejne dni przywracanie systemów chłodzenia reaktorów próby usunięcia skażonej wody.

18 WIDOK ELEKTROWNI PO POŻARACH

19 SKUTKI AWARII

20 SKUTKI AWARII

21 Cez – 137 (T½ = 30 lat) CZRENOBYL - 85 PBq (1015 Bq)
PORÓWNANIE AWARII Cez – 137 (T½ = 30 lat) CZRENOBYL PBq (1015 Bq) FUKUSHIMA PBq (1015 Bq)


Pobierz ppt "CZERNOBYL."

Podobne prezentacje


Reklamy Google