Pobieranie prezentacji. Proszę czekać

Pobieranie prezentacji. Proszę czekać

Discrete, Warsaw, 30 November 2016

Podobne prezentacje


Prezentacja na temat: "Discrete, Warsaw, 30 November 2016"— Zapis prezentacji:

1 Discrete, Warsaw, 30 November 2016
Studies of discrete symmetries in a purely leptonic system using Jagiellonian Positron Emission Tomograph Discrete, Warsaw, 30 November 2016 Paweł Moskal, Jagiellonian University for and on behalf of the J-PET collaboration Supported by Polish National Center for Development and Research and Foundation for Polish Science

2 J-PET: First PET based on plastic scintillators
Jagiellonian-PET Collaboration: P. Moskal1, D. Alfs1, T. Bednarski1, P. Białas1, C. Curceanu2, E. Czerwiński1, K. Dulski1, A. Gajos1, B. Głowacz1, M. Gorgol3, B. Hiesmayr4, B. Jasińska3, D. Kamińska1, G. Korcyl1, P. Kowalski5, T. Kozik1, W. Krzemień5, E. Kubicz1, M. Mohammed1, M. Pawlik-Niedźwiecka1, Sz. Niedźwiecki1, M. Pałka1, L. Raczyński5, Z. Rudy1, O. Rundel1, N. Sharma1, M. Silarski1, J. Smyrski1, A. Strzelecki1, A. Wieczorek1, W. Wiślicki5, B. Zgardzińska3, M. Zieliński1 1Jagiellonian University, Poland; 2LNF INFN, Italy; 3Maria Curie-Skłodowska University, Poland; 4University of Vienna, Austria; 5National Centre for Nuclear Research, Poland; Aim: Cost effective whole-body PET MR and CT compatible PET insert 2 2

3 Cracow, July 2016 Jagiellonian University
Jagiellonian PET Jagiellonian University Dziedziniec -> yard Cracow, July 2016 Collegium Maius at the university since 1400 historical entanglement

4 J-PET Jagiellonian PET
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Jagiellonian PET Positronium Discrete symmetries Quantum entanglement Operator C P T CP CPT S • k1 x k (S • k1) (S • k1 x k2 ) 3S1 --> 3γ --> Correlations also posiible with para-positronium !!! Operator C P T CP CPT S • E1 x E S • E 1S0 --> 2γ -->

5 Rozmiary, pokaz przenikania na modelu skarpetkowym
+ - RADIOACTIVE SUGER 7 mSv PET/CT ~ 2.5 mSv PET ~3 mSv natural background in Poland Fluoro–deoxy-glucose (F-18 FDG) ~ gamma per second Rozmiary, pokaz przenikania na modelu skarpetkowym

6 RADIOACTIVE SUGER 7 mSv PET/CT ~ 2.5 mSv PET ~200 000 000
OBRAZ TOMOGRAFICZNY RADIOACTIVE SUGER 7msV a naturalne w polsce jest 2.5msV (10% cosmic ray) a w Norwegii 7-20? A w Colombia 2.4 msV (16% cosmic rays) 7 mSv PET/CT ~ 2.5 mSv PET ~3 mSv natural background in Poland Fluoro–deoxy-glucose (F-18 FDG) ~ gamma per second

7 As regards the brain studies the only I did so far is a check whether I have a brain..
And this is a prove ....I have a prove .... Do you recognise, maybe I should turn to the side …. As regards the brain studies the only I did so far is a check whether I have a brain.. (But we may change it in the future ...???) W trakcie zwiedzania okazało się, że poszukiwani są ochotnikcy do badań, których celem było lepsze zrozumienia zaburzeń centralnego układu nerwowego. Wpisałem się więc na listę ochotników. Już po około miesiącu otrzymałem z prośbą o zgodę na zrobienie zdjęcia tomograficznego Było ono niezbędne dla porównania wyników badań zdrowych osób z osobami z zaburzeniami ruchowymi wywołanymi chorobą Parkinsona . Rysunek 2. Na rysunku pokazany jest rozkład gęstości receptorów adenozynowych A1 w moim mózgu w dniu Pokazane są przekroje: poprzeczny (lewa kolumna), czołowy (środkowa kolumna) oraz strzałkowy (prawa kolumna). Im jaśniejsze barwy tym większe stężenie. Górny rząd przedstawia obrazy wykonane techniką NMR, środkowy – techniką PET, a dolny jest nałożeniem obu obrazów. Przedmiotem badań był rozkład gęstości receptorów adenozynowych A1. Badania wymagały nieco poświęceń ponieważ już dzień wcześniej musiałem zaprzestać picia kawy, ze względu na to, że molekuły adenozyny są podobne do cząsteczek kofeiny, które podobno blokują receptory adenozynowe w mózgu. Na dodatek w Pozytonowej Emisyjnej Tomografii radiofarmaceutyk podaje się pacjentowi dożylnie, czego, z jakiś niezrozumiałych ogólnie powodów, unikam jak ognia. Po około 90 minutach badań tomografem PET wzięto mnie jeszcze do sali obok i zrobiono mi obraz tomograficzny mózgu metodą magnetycznego rezonansu jądrowego. Z przeprowadzonych badań otrzymałem na pamiątkę zdjęcia pokazane na rysunku 2  może lepiej: ... zrobienie zdjęcia tomograficznego – chodziło o porównanie zdrowych osób z osobami z zaburzeniami ruchowymi wywołanymi chorobą Parkinsona

8 crystals → plastics A B C D Only timining is involved...
TU WYJASNIC ZE MIANA Kryształ -> plastik jest istotna także do badań symetrii … crystals → plastics C D X

9 precision of 21ps (sigma) for 10 Euro per sample
New idea… BREAK THROUGH ONLY DIGITAL in triggerless mode precision of 21ps (sigma) for 10 Euro per sample FFE sampling & Readout electronics M.Pałka, P.M., PCT/EP2014/068367 G. Korcyl, P. M., M. Kajetanowicz, M. Pałka, PCT/EP2014/068352 Library of signals; Principal Component Analysis; Compressive Sensing; J-PET: L. Raczyński et al., Nucl. Instr. Meth. A786 (2015) 105 J-PET: P. M. et al., Nucl. Instrum. Meth. A775 (2015) 54 J-PET: W. Krzemień et al., Acta Phys. Pol. B47 (2016) 561 Library of signals ; Principal Component Analysis; Compressive Sensing; J-PET: L. Raczyński et al., Nucl. Instr. Meth. A786 (2015) 105 J-PET: P. M. et al., Nucl. Instrum. Meth. A775 (2015) 54

10 Jagiellonian PET AFOV: 50 cm ; TOF < 500 ps (FWHM)
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 50 cm ; TOF < 500 ps (FWHM)

11 Jagiellonian PET AFOV: 50 cm ; TOF < 500 ps (FWHM)
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 50 cm ; TOF < 500 ps (FWHM)

12 Jagiellonian PET AFOV: 50 cm ; TOF < 500 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 50 cm ; TOF < 500 ps

13 Jagiellonian PET - + AFOV: 17 cm → 50 cm ; TOF < 500 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 17 cm → 50 cm ; TOF < 500 ps

14 Jagiellonian PET - + AFOV: 17 cm → 50 cm ; TOF < 500 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 17 cm → 50 cm ; TOF < 500 ps

15 Rozmiary, pokaz przenikania na modelu skarpetkowym
+ - Rozmiary, pokaz przenikania na modelu skarpetkowym

16 Ortho-positronium life-time tomography
Y.H. Wang et al., PRA89 (2014) [G1] Y.H. Wang et al., Phys. Rev. A 89 (2014) G2] Upper panel shows positronium atom and the probability density of spatial distribution of electron and positron in the positronium [G1]. Left figure in the lower panel indicates main decays modes of the two ground states of positronium with orbital angular momentum L=0. The para-positronium (1S0) and ortho-positronium (3S1). The substates of positronium are denoted according to the conventional spectroscopic notation: 2S+1LJ, where S denotes total spin of the electron-positron pair, and J denotes the total angular momentum. Right figure in the lower panel shows the SEM image of the porous aerogel structure. The SBA-15 material as well as the image were performed by the applicants of this project at the UMSC University in Lublin. Free spaces between molecules (holes) with the size of the order of 10 nm are visible. The upper-right figure shows an example of the structure of the silica aerogel [G2] indicating free voids where the positronium atoms may be trapped.

17 J-PET Jagiellonian PET
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Jagiellonian PET Positronium Discrete symmetries Quantum entanglement Operator C P T CP CPT S • k1 x k (S • k1) (S • k1 x k2 ) 3S1 --> 3γ --> Operator C P T CP CPT S • E1 x E S • E 1S0 --> 2γ -->

18 1S0 3S1 L 0 0 3S1 Ortho-positronium tau(o-Ps) ≈ 142 ns
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns 1S0 3S1 L Positronium size is similar to the size of the hydrogen atom Production probability and life-time depends on the size of the free volumes between molecules… p-Ps -> gg o-Ps -> ggg P(o-Ps) = 3 P(p-Ps) Process kick-off and o-Ps -> p-Ps (Probability for this processes depends on the size of the free volumes) Most of o-Ps anyhow will decay to gg Tu TEZ POWIEDZIEC O BEZPOSREDNIEJ PRODUKCJI I CZASIE około ps Direct annihilation P(gg) = 370 P(ggg) = 10^6 P(gggg) etc… But in medium this is not

19 - + 1S0 3S1 L 0 0 S 0 1 J 0 1 3S1 Ortho-positronium tau(o-Ps) ≈ 142 ns
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns 1S0 3S1 L S J - S = 0 + S = 1 Positronium size is similar to the size of the hydrogen atom Production probability and life-time depends on the size of the free volumes between molecules… p-Ps -> gg o-Ps -> ggg P(o-Ps) = 3 P(p-Ps) Process kick-off and o-Ps -> p-Ps (Probability for this processes depends on the size of the free volumes) Most of o-Ps anyhow will decay to gg Tu TEZ POWIEDZIEC O BEZPOSREDNIEJ PRODUKCJI I CZASIE około ps Direct annihilation P(gg) = 370 P(ggg) = 10^6 P(gggg) etc… But in medium this is not

20 1S0 Para-positronium tau(p-Ps) ≈ 125 ps
3S1 Ortho-positronium tau(o-Ps) ≈ ns 1S0 3S1 L S C J - S = 0 + S = 1 C |Ps > = (-1)L+S |Ps > Positronium size is similar to the size of the hydrogen atom Production probability and life-time depends on the size of the free volumes between molecules… p-Ps -> gg o-Ps -> ggg P(o-Ps) = 3 P(p-Ps) Process kick-off and o-Ps -> p-Ps (Probability for this processes depends on the size of the free volumes) Most of o-Ps anyhow will decay to gg Tu TEZ POWIEDZIEC O BEZPOSREDNIEJ PRODUKCJI I CZASIE około ps Direct annihilation P(gg) = 370 P(ggg) = 10^6 P(gggg) etc… But in medium this is not C |nγ > = (-1)n | nγ >

21 - + 1S0 3S1 L 0 0 S 0 1 C + - L=0 -> P - - CP - + J 0 1
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns 1S0 3S1 L S C L=0 -> P CP J - S = 0 + S = 1 Positronium size is similar to the size of the hydrogen atom Production probability and life-time depends on the size of the free volumes between molecules… p-Ps -> gg o-Ps -> ggg P(o-Ps) = 3 P(p-Ps) Process kick-off and o-Ps -> p-Ps (Probability for this processes depends on the size of the free volumes) Most of o-Ps anyhow will decay to gg Tu TEZ POWIEDZIEC O BEZPOSREDNIEJ PRODUKCJI I CZASIE około ps Direct annihilation P(gg) = 370 P(ggg) = 10^6 P(gggg) etc… But in medium this is not C |Ps > = (-1)L+S |Ps > C |nγ > = (-1)n | nγ >

22 - POSITRONIUM + CP = + Para-positronium tau(p-Ps) ≈ ps CP = - Ortho-positronium tau(o-Ps) ≈ ns s anty-d MESON K π CP ~= tau(KS) ≈ 90 ps CP ~= tau(KL) ≈ 52 ns π KS π π KL π Positronium size is similar to the size of the hydrogen atom Production probability and life-time depends on the size of the free volumes between molecules… p-Ps -> gg o-Ps -> ggg P(o-Ps) = 3 P(p-Ps) Process kick-off and o-Ps -> p-Ps (Probability for this processes depends on the size of the free volumes) Most of o-Ps anyhow will decay to gg Tu TEZ POWIEDZIEC O BEZPOSREDNIEJ PRODUKCJI I CZASIE około ps Direct annihilation P(gg) = 370 P(ggg) = 10^6 P(gggg) etc… But in medium this is not

23 J-PET Jagiellonian PET
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Jagiellonian PET Positronium Discrete symmetries Quantum entanglement Operator C P T CP CPT S • k1 x k (S • k1) (S • k1 x k2 ) 3S1 --> 3γ --> Operator C P T CP CPT S • E1 x E S • E 1S0 --> 2γ -->

24 ODE TO POSITRONIUM - + 10-9 vs upper limits of 3 10-3 for T, CP, CPT
Eigen-state of Hamiltonian and P, C, CP operators The lightest known atom and at the same time anti-atom which undergoes self-annihilation as flavor neutral mesons The simplest atomic system with charge conjugation aigenstates. Electrons and positron are the lightest leptons so they can not decay into lighter partilces via weak interactiom ... effects due the weak interaction can lead to the violation at the order of M. Sozzi, Discrete Symmetries and CP Violation, Oxford University Press (2008) No charged particles in the final state (radiative corrections very small 2 * 10-10) Light by light contributions to various correlations are small B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988). W. Bernreuther et al., Z. Phys. C 41, 143 (1988). Purely Leptonic state ! Breaking of T and CP was observed but only for processes involving quarks. So far breaking of these symmetries was not observed for purely leptonic systems. vs upper limits of for T, CP, CPT vs upper limits of for C For neutrinos there are indication to maybe see something for CP ??? On the level of 2sigma for delta_cp phase connected to Theta13 M. Gosh et al., PR D89 (2014) (R) - + Few interesting facts about POSITRONIUM….

25 |k1| > |k2| > |k3| T, CPT Operator C P T CP CPT + –
𝑺 ∙ 𝒌 𝟏 + 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝑺 ∙ 𝒌 𝟏 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝒌 𝟏 × 𝜺 𝟐 𝑺 ∙ 𝜺 𝟏 𝑺 ∙ 𝒌 𝟐 × 𝜺 𝟏 Operators for the o-Ps→3γ process, and their properties with respect to the C, P, T, CP and CPT symmetries. |k1| > |k2| > |k3| T, CPT So far best accuracy for CP and CPT violation was reported by < CP < at 90% CL T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) CPT = ± P.A. Vetter and S.J. Freedman, Phys. Rev. Lett. 91, (2003).

26 Jagiellonian PET σ(t-hit) ~ 100 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps

27 Jagiellonian PET σ(t-hit) ~ 100 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps

28 Jagiellonian PET σ(t-hit) ~ 100 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps

29 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

30 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

31 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

32 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
J-PET: A. Gajos et al., NIM A819 (2016) 54 P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

33 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

34 θ12 < θ23 < θ31 θ23 > 180 – θ12 θ23 = 180 – θ12
θ23 > 180 – θ12 θ23 = 180 – θ12 θ23 < 180 – θ12 θ12 < θ23 < θ31 Reduction by factor 109

35 θ23 > 180 – θ12 θ23 = 180 – θ12 θ23 < 180 – θ12 Reduction by factor 109

36 Reduction by factor 109

37 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
Operator C P T CP CPT 𝑺 ∙ 𝒌 𝟏 + 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝑺 ∙ 𝒌 𝟏 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

38 J-PET Jagiellonian PET
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Jagiellonian PET Positronium Discrete symmetries Quantum entanglement Operator C P T CP CPT S • k1 x k (S • k1) (S • k1 x k2 ) NEW! 3S1 --> 3γ --> Operator C P T CP CPT S • E1 x E S • E 1S0 --> 2γ -->

39 Jagiellonian PET 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) ~100 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) ~100 ps

40 Jagiellonian PET σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 𝒌 𝟏 × 𝜺 𝟐
Operator C P T CP CPT 𝑺 ∙ 𝒌 𝟏 + 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝑺 ∙ 𝒌 𝟏 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝒌 𝟏 × 𝜺 𝟐 𝑺 ∙ 𝜺 𝟏 𝑺 ∙ 𝒌 𝟐 × 𝜺 𝟏 P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 SM vs upper limits of for T, CP, CPT SM vs upper limits of for C

41 J-PET Jagiellonian PET
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Jagiellonian PET Positronium Discrete symmetries Quantum entanglement Operator C P T CP CPT S • k1 x k (S • k1) (S • k1 x k2 ) NEW! 3S1 --> 3γ --> Operator C P T CP CPT S • E1 x E S • E 1S0 --> 2γ -->

42 Jagiellonian PET 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) = 80 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) = 80 ps

43 Jagiellonian PET σ(t-hit) = 80 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊
|V> ≡ 0° ≤ φ < 45° |H> ≡ 45° < φ ≤ 90° |GHZ > = 1/sqrt(2) ( |H H H> + |V V V> ) | W > = 1/sqrt(3) ( |H H V> + |H V H> + |V H H >) P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) = 80 ps 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊

44 Jagiellonian PET - + 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) ~ 100 ps
It is an open question whether or not the three-photon entanglement can be reduced to the two-photon entanglement and decoherence of the two-photon states does imply decoherence in photon triplets. This hypothesis can be tested by comparison of measured two- and three-photon correlation functions. There exist three-photon states maximizing the Greenberger-Horn-Zeilinger (GHZ) entanglement and they can be used to test quantum local realism versus quantum mechanics. Jagiellonian PET It is an open question whether or not the three-photon entanglement can be reduced to the two-photon entanglement and decoherence of the two-photon states does imply decoherence in photon triplets. This hypothesis can be tested by comparison of measured two- and three-photon correlation functions. There exist three-photon states maximizing the Greenberger-Horn-Zeilinger (GHZ) entanglement and they can be used to test quantum local realism versus quantum mechanics. D.M. Greenberger et al., Am. J. Phys. 58(1990)1131 A. Acin et al., Phys. Rev. A63(2001) ; N.D. Mermin, Phys. Rev. Lett. 65 (1990)1838 - + P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications 𝜺 𝒊 = 𝒌 𝒊 × 𝒌 ′ 𝒊 σ(t-hit) ~ 100 ps

45 crystals → plastics A B C D
…. J-PET: L. Raczyński et al., Nucl. Instrum. Meth. A764 (2014) 186 J-PET: P. M. et al., Nucl. Instrum. Meth. A764 (2014) 317 J-PET: P. M. et al., Nucl. Instrum. Meth. A775 (2015) 54 J-PET: L. Raczyński et al., Nucl. Instrum. Meth. A786 (2015) 105 J-PET: P. M. et al., Phys. Med. Biol. 61 (2016) 2025 J-PET: A. Gajos et al., Nucl. Instrum. Meth 819 (2016) 54 J-PET: P. M. et al., Acta Phys. Pol. B 47 (2016) 509 J-PET: D. Kamińska et al., Eur. Phys. J. C76 (2016) 445 Over 50 articles and 16 international patent applications Y A B crystals → plastics C D X

46 THANK YOU FOR YOUR ATTENTION Jagiellonian PET - +
Operator C P T CP CPT 𝑺 ∙ 𝒌 𝟏 + 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝑺 ∙ 𝒌 𝟏 𝑺 ∙ 𝒌 𝟏 × 𝒌 𝟐 𝒌 𝟏 × 𝜺 𝟐 𝑺 ∙ 𝜺 𝟏 𝑺 ∙ 𝒌 𝟐 × 𝜺 𝟏 - + P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications THANK YOU FOR YOUR ATTENTION SM vs upper limits of for T, CP, CPT SM vs upper limits of for C

47 Cracow, July 2016 Jagiellonian University
Jagiellonian PET Jagiellonian University Dziedziniec -> yard Cracow, July 2016 Collegium Maius at the university since 1400 historical entanglement

48

49 Rozmiary, pokaz przenikania na modelu skarpetkowym
- - - - + - - - - Rozmiary, pokaz przenikania na modelu skarpetkowym

50 Rozmiary, pokaz przenikania na modelu skarpetkowym
Ortho-positronium life-time tomography - - - - + - - - - Patent applications: P. M., PCT/EP2014/068374; A. Gajos, E. Czerwiński, D. Kamińska, P. M., PCT/PL2015/050038 Rozmiary, pokaz przenikania na modelu skarpetkowym

51 - + The age of mice’s tumour with o-Ps lifetime
A.H. Al-Mashhadani et al., Iraqi J. Sci. 42C, 60 (2001) 3. - + Leukemia [Lukimia]. R. Pietrzak et al., NUKLEONIKA 58 (2013) 199

52 J-PET: E. Kubicz, et al. , Nukleonika 60 (2015) 749
J-PET: E. Kubicz, et al., Nukleonika 60 (2015) 749. Studies of unicellular micro-organisms Saccharomyces cerevisiae by means of positron annihillation lifetime spectroscopy Liofilizacja – suszenie sublimacyjne zamrożonych substancji. Figure 4: Environmental Scanning Electron Microscopy images of lyophilised yeasts (upper) and dried under normal conditions, after addition of water (bot- tom). Figure 1: The o-Ps lifetime and intensity values as a function of the water vapour sorption time, index 3 denotes shorter-lived component (squares) while 4 { longer-lived (circles). Measurement were conducted in four stages: 1) in vacuum , 2) in dried air, 3) with presence of water vapour, and 4) with drop of water placed in the chamber containing yeast. Environmental Scanning Electron Microscopy images of lyophilised yeasts (upper) and dried under normal conditions, after addition of water (bot-tom).

53 Jagiellonian PET σ(t-hit) ~ 100 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications σ(t-hit) ~ 100 ps

54 1364 Jagiellonian University
Dziedziniec -> yard Collegium Maius at the University since 1400 historical entanglement

55 J-PET: D. Kamińska et al., Eur. Phys. J. C76 (2016) 445

56 But epsilon^2 = 20 to 40 smaller efficiency
It is important to note that the cost of J-PET does not increase with the increase of the FOV epsilon^2 = 20 to 40 smaller efficiency But Solid angle > factor of ~5 600 ps --> 200ps – 300ps --> factor of 1m instead of ~17 cm > factor of 10 N layers in the strip-PET ----> factor N2 Conservatively: for N= > total factor of ~ 100 Lower dose by factor of 3 (100 better / 30 worse)

57 R = FOM  R = FOM_JPET / FOM_LSO
assuming: AFOV_LSO = 20 cm CRT_LSO = 400 ps N_JPET_layers = 2 FOM_JPET R = FOM_LSO LSO N_JPET_layers = 1 Figure of Merit for whole body imaging (FOM): J-PET: P.M. et al., Phys. Med. Biol. 61 (2016) 2025; arXiv: FOM_whole_body ~= ϵ_detection2 ∙ ϵ_selection2 ∙ AFOV2 / CRT (detection effi.)2 ∙ (selection effi.)2 ∙ acceptance FOM  CRT ∙ Number_of_bed_positions

58 Jagiellonian PET AFOV: 17 cm → 50 cm ; TOF < 500 ps
P. Moskal et al., NIM A 764 (2014) 317. P. Moskal et al., NIM A 775 (2015) 54. L. Raczynski et al., NIM A 764 (2014) L. Raczynski et al., NIMA 786 (2015) 105. 16 International Patent Applications AFOV: 17 cm → 50 cm ; TOF < 500 ps

59 J-PET: P. Bialas, J. Kowal, A. Strzelecki et al. Acta Phys. Pol
J-PET: P. Bialas, J. Kowal, A. Strzelecki et al. Acta Phys. Pol. A127 (2015) 1500 Adam Strzelecki, PhD thesis, strips, diameter 85 cm, 50 cm AFOV, 10^8 events, 50 iterations, J-PET: image reconstracted from simulated data rotated (coronal) axially arranged 4b 3a Figure from P. Slomka, T. Pan, G. Germano, Semin. Nucl. Med. 46 (2016) 46

60 3S1 Ortho-positronium tau(o-Ps) ≈ 142 ns
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Operator C P T CP CPT S • k1 x k P.A. Vetter and S.J. Freedman, Phys. Rev. Lett. 91, (2003). C_CPT = ± SM – 10-9 photon-photon interactions Figure taken form the presentation of P. Vetter, INT UW Seattle, November, 2002

61 3S1 Ortho-positronium tau(o-Ps) ≈ 142 ns
1S0 Para-positronium tau(p-Ps) ≈ ps 3S1 Ortho-positronium tau(o-Ps) ≈ ns Operator C P T CP CPT (S • k1) (S • k1 x k2 ) So far best accuracy for CP violation was reported by T. Yamazaki et al., Phys. Rev. Lett. 104 (2010) < C_CP < at 90% CL vs SM – W. Bernreuther et al., Z. Phys. C 41, 143 (1988) This is due to photon-photon interactions in the final state caused by the creation of virtual charged particle pairs)


Pobierz ppt "Discrete, Warsaw, 30 November 2016"

Podobne prezentacje


Reklamy Google