Metody Inteligencji Obliczeniowej

Slides:



Advertisements
Podobne prezentacje
Klasyfikacja danych Metoda hierarchiczne
Advertisements

Planowanie bezkolizyjnego ruchu w środowisku wielu robotów z wykorzystaniem gier niekooperacyjnych OWD
Inteligencja Obliczeniowa Metody oparte na podobieństwie do wzorców.
Algorytm Dijkstry (przykład)
SZTUCZNA INTELIGENCJA ARTIFICIAL INTELLIGENCE
Katedra Informatyki Stosowanej UMK
Katedra Informatyki Stosowanej UMK
Uczenie konkurencyjne.
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Perceptrony
Badania operacyjne. Wykład 1
CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych.
Ulepszenia metody Eigenfaces
Rozpoznawanie Twarzy i Systemy Biometryczne, 2005/2006
Sztuczna Inteligencja Reprezentacja wiedzy I Wstęp. Włodzisław Duch Katedra Informatyki Stosowanej UMK Google: W. Duch.
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Paweł Kramarski Seminarium Dyplomowe Magisterskie 2
Podstawy projektowania i grafika inżynierska
Linear Methods of Classification
Mirosław ŚWIERCZ Politechnika Białostocka, Wydział Elektryczny
Sieci Hopfielda.
Sieci neuronowe jednokierunkowe wielowarstwowe
Zbiór do posortowania mieści się w pamięci
Opiekun: dr inż. Maciej Ławryńczuk
Detekcja twarzy w obrazach cyfrowych
Modelowanie populacji i przepływu opinii pomiędzy aktorami sztucznej inteligencji za pomocą sieci społecznej Wojciech Toman.
GŁOSOWA ŁĄCZNOŚĆ Z KOMPUTEREM
Systemy wspomagania decyzji
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
ZWIĄZKI MIĘDZY KLASAMI KLASY ABSTRAKCYJNE OGRANICZENIA INTERFEJSY SZABLONY safa Michał Telus.
MS Excel - wspomaganie decyzji
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
VI EKSPLORACJA DANYCH Zadania eksploracji danych: klasyfikacja
VII EKSPLORACJA DANYCH
Politechniki Poznańskiej
METODY PODEJMOWANIA DECYZJI
Programowanie strukturalne i obiektowe C++
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski 1 informatyka +
Diagram obiektów Diagram obiektów ukazuje elementy i związki z diagramu klas w ustalonej chwili. Diagram obiektów jest grafem złożonym z wierzchołków i.
Dane – informacje - wiadomości Kodowanie danych i problem nadmiarowości.
Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe
Metody sztucznej inteligencji – technologie rozmyte i neuronoweReguła propagacji wstecznej  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów.
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
BAZY DANYCH ZAAWANSOWANE MECHANIZMY Microsoft Access Adrian Horzyk
Podstawy automatyki I Wykład 1b /2016
BAZY DANYCH Microsoft Access Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i.
SZTUCZNA INTELIGENCJA
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
GeneracjeTechnologia Architektura przetwarzania 0. Przekaźniki elektromechaniczne 1. Lampy elektronowe 2. Tranzystory 3. Układy scalone 3.5.Układy dużej.
Metody Inteligencji Obliczeniowej Adrian Horzyk Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii.
O ODPORNOŚCI KONWENCJONALNEGO OBSERWATORA LUENBERGERA ZREDUKOWANEGO RZĘDU Ryszard Gessing Instytut Automatyki Politechnika Śląska.
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Systemy neuronowo – rozmyte
Perceptrony o dużym marginesie błędu
Co do tej pory robiliśmy:
Perceptrony o dużym marginesie błędu
Koszyk danych – miejsce tymczasowego przechowywania ręcznie wybranych zmiennych : Funkcje koszyka Przekształcanie koszyka w grupę danych.
Inteligencja Obliczeniowa Perceptrony
Zapis prezentacji:

Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów K-Nearest Neighbours (KNN) Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium Biocybernetyki 30-059 Kraków, al. Mickiewicza 30, paw. C3/205 horzyk@agh.edu.pl, Google: Adrian Horzyk

WSTĘP Metoda K Najbliższych Sąsiadów (k-Nearest Neighbors) należy do grupy algorytmów leniwych (lazy algorithms), czyli takich, które nie tworzą wewnętrznej reprezentacji danych uczących, lecz szukają rozwiązania dopiero w momencie pojawienia się wzorca testowego w trakcie klasyfikacji. Metoda przechowuje wszystkie wzorce uczące, względem których wyznacza odległość wobec wzorca testowego. Do której klasy należy gwiazdka (kółeczek, trójkątów czy kwadratów)? Istnieje też grupa metod gorliwych (eager learning algorithms). Należą tutaj takie algorytmy uczące, które wewnętrzną reprezentację danych uczących (swoisty rodzaj wiedzy o problemie). Następnie w momencie pojawienia się wzorca testującego korzystając z tej wewnętrznej reprezentacji dokonują jego np. klasyfikacji. Do tej grupy metod należą wszystkie rodzaje sieci neuronowych oraz systemy rozmyte, drzewa decyzyjne i wiele innych. Po zakończonej nauce (adaptacji modelu), dane uczące mogą zostać usunięte.

ZBIÓR WZORCÓW UCZĄCYCH Zbiór wzorców uczących (learning patterns, training examples) składa się ze zbioru par <xi, yi>, gdzie xi jest zbiorem parametrów xi ={xi1,…,xin} definiujących obiekty (zwykle w postaci wektora lub macierzy danych), zaś yi jest wartością przewidywaną/powiązaną/skojarzoną, np. indeksem lub nazwą klasy, do której obiekt xi należy i którą razem z innymi obiektami tej klasy definiuje. Na rysunku mamy obiekty należące do 3 klas: kółeczka, trójkąciki i kwadraciki. Gwiazdka jest nowym obiektem, który chcemy sklasyfikować, czyli przyporządkować go do jednej z istniejących klas obiektów. Do którego zbioru należy gwiazdka? Co nam podpowiada intuicja? Można np. badać odległość gwiazdki od pozostałych obiektów, dla których klasa jest znana, korzystając z jednej ze znanych metryk, np. odległości Euklidesa:

DIAGRAMY VORONOI Diagramy Voronoi (Voronoi diagrams) ilustrują obszary przyciągania (attraction areas) do najbliższych pojedynczych elementów w przestrzeni:

METODA K NAJBLIŻSZYCH SĄSIADÓW Metoda k Najbliższych Sąsiadów (k-Nearest Neighbors) wyznacza k sąsiadów, do których badany element (gwiazdka) ma najbliżej dla wybranej metryki (np. Euklidesowej), a następnie wyznacza wynik w oparciu o głos większości: Do którego zbioru należy gwiazdka? Wynik działania zależy to od tego, ilu najbliższych sąsiadów weźmiemy pod uwagę.

METODA K NAJBLIŻSZYCH SĄSIADÓW Metoda k Najbliższych Sąsiadów (k-Nearest Neighbors) daje różne wyniki w postaci obszarów przyciągania, co determinuje wynik klasyfikacji: Większe wartości k umożliwiają wygładzenie obszarów podziału, usunięcie szumu i artefaktów, lecz również prowadzą do błędów w klasyfikacji rzadszych wzorców. Pojawia się problem ich poprawnej dyskryminacji i uogólniania.

Dobieranie wartości k Jeślibyśmy wzięli pod uwagę k=N, gdzie N to ilość wszystkich elementów zbioru wzorców uczących, wtedy zawsze wynik klasyfikacji będzie określony przez najliczniej reprezentowaną klasę w tym zbiorze uczących, a więc w tym przykładzie: kwadraciki. Przykładowy wykres zależności wyników adaptacji od wartości k:

MODYFIKACJE METODY K NAJBLIŻSZYCH SĄSIADÓW Metoda Ważonych Odległości Najbliższych Sąsiadów (Distance Weighted Nearest Neighbors) prowadzi do głosowania na temat klasyfikacji gwiazdki biorąc pod uwagę k najbliższych sąsiadów lub nawet wszystkie wzorce, lecz ich głosy są ważone w zależności od ich odległości (dla wybranej metryki) do gwiazdki: im dalej jest głosujący wzorzec tym ma mniejszą wagę. A więc wzorce położone najbliżej będą miały największy wpływ na wynik klasyfikacji: w3 w4 w5 w2 w6 w1 w7

TRUDNOŚCI METOD K NAJBLIŻSZYCH SĄSIADÓW Metody Najbliższych Sąsiadów ponoszą karę za swoje „lenistwo”, związane z brakiem budowy modelu generalizującego wzorce uczące. Wymagają przeglądania w pętlach wszystkich wzorców uczących dla wszystkich wymiarów (złożoność wielomianowa). Nawet w przypadku poindeksowania wzorców względem każdego wymiaru/parametru w bazie danych, trzeba przejść po każdym z wymiarów, w celu określenia najbliższych sąsiadów, co też jest czasochłonne w zależności od wyboru k. W metodach sprawdzających ważone odległości do wszystkich wzorców i tak trzeba przejść po nich wszystkich każdorazowo. W przypadku dużej ilości wzorców lub dużego wymiaru danych klasyfikacja realizacja klasyfikacji wiąże się z ogromnym narzutem czasowym. Od tego wolne są inne modele, które dla wzorców uczących najpierw budują model (zwykle jednokrotnie pewnym nakładem czasowym), lecz potem klasyfikacja przebiega już bardzo szybko! Metoda jest ponadto wrażliwa na dane zaszumione lub błędne, np. w odniesieniu do niektórych cech wzorców (noisy features). Mogą one zmienić wynik klasyfikacji. Metoda k-NN natomiast stosunkowo dobrze działa dla dużej ilości klas. PRÓBY ROZWIĄZANIA: Adaptacja sposobu określania odległości poprzez adaptacyjne ważenie cech, odległości, wartości k.

MODYFIKACJE METODY K NAJBLIŻSZYCH SĄSIADÓW Korzystając np. z asocjacyjnego sortowania ASSORT oraz neuronowych struktur AANG można by było bardzo szybko wyznaczyć najbliższych sąsiadów na podstawie podobieństwa do prezentowanego wzorca na wejściu, lecz po co, skoro sama sieć AANG również umożliwia klasyfikację, zwykle nie gorszą niż k-NN, a w dodatku tworzy model na podstawie danych uczących, co znacznie przyspiesza końcowy proces klasyfikacji.

PORÓWNANIE WYNIKÓW KLASYFIKACJI AANG i kNN Dla zbioru głosowań z ML Repository klasyfikator ASONN uzyskał najlepszy wynik w trakcie uczenia, nieznacznie ustępując najlepszym klasyfikatorom w trakcie uogólniania na zbiorach testowych z wykorzystaniem 10-krotnej walidacji krzyżowej. Dla zbioru jonosfery z ML Repository klasyfikator ASONN uzyskał w trakcie uczenia bliski najlepszemu wynik, ustępując w uogólnianiu tylko klasyfikatorowi SVM dla odpowiednio dobranych parametrów na zbiorach testowych z wykorzystaniem 10-krotnej walidacji krzyżowej. Warto nadmienić, iż większość porównywanych tutaj klasyfikatorów wymaga żmudnego dobierania parametrów uczenia i szukania metodą prób i błędów tego, który da najlepszy wynik, zaś klasyfikator ASONN automatycznie sprawdza maksymalnie 8 kombinacji stopnia dyskryminacji i rozmycia brzegów.

PORÓWNANIE WYNIKÓW KLASYFIKACJI AANG i kNN W przypadku klasyfikacji win z ML Repository klasyfikator ASONN uzyskał najlepszy wynik zarówno w trakcie uczenia, jak również podczas klasyfikacji zbiorów testowych z wykorzystaniem 10-krotnej walidacji krzyżowej. Dla zbioru irysów z ML Repository klasyfikator ASONN uzyskał najlepszy wynik w trakcie uczenia, nie ustępując znacznie w trakcie uogólniania na zbiorach testowych z wykorzystaniem 10-krotnej walidacji krzyżowej. Dodatkowo żółtym kolorem zaznaczono klasyfikację przeprowadzoną przez aktywny asocjacyjny graf neuronowy AANG oraz klasyfikatora SONN-3, który był bezpośrednim poprzednikiem klasyfikatora ASONN.