U(0)=0 proste równanie traktowane jawnym schematem Eulera.

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Rozwiązywanie równań różniczkowych metodą Rungego - Kutty
Metody badania stabilności Lapunowa
Metody numeryczne część 1. Rozwiązywanie układów równań liniowych.
OSCYLATOR HARMONICZNY
Metody rozwiązywania układów równań liniowych
Metody Numeryczne Wykład no 12.
Wykład no 9.
Metody numeryczne wykład no 2.
Metody Numeryczne Wykład no 3.
Przykład: Dana jest linia długa o długości L 0 bez strat o stałych kilometrycznych L,C.Na początku linii zostaje załączona siła elektromotoryczna e(t),
Wykład no 11.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
ZLICZANIE cz. II.
ROZWIĄZYWANIA PROBLEMÓW ELEKTROMAGNETYCZNYCH
Metody matematyczne w Inżynierii Chemicznej
Metoda różnic skończonych I
Opis matematyczny elementów i układów liniowych
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Metody matematyczne w Inżynierii Chemicznej
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Elementy Rachunku Prawdopodobieństwa i Statystyki
Zakładamy a priori istnienie rozwiązania α układu równań.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Wprowadzenie do ODEs w MATLAB-ie
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
Stabilność metod numerycznych
Źródła błędów w obliczeniach numerycznych
Sterowanie – metody alokacji biegunów
Sterowanie – metody alokacji biegunów III
Drgania punktu materialnego
Metody matematyczne w Inżynierii Chemicznej
Tematyka zajęć LITERATURA
Metody nieinkluzyjne: Metoda iteracji prostej.
Regresja liniowa Dany jest układ punktów
Metody rozwiązywania układów równań liniowych
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
jawny schemat Eulera [globalny błąd O(Dt)]
region bezwzględnej stabilności dla ogólnej niejawnej metody RK
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Szacowanie błędu lokalnego w metodach jednokrokowych
Dyskretyzacja równania dyfuzji cd.
U(t) t  t u’(t)=f(t,u) u(t+  t)=u(t)+  (t,u(t),  t) RRZ: Jednokrokowy schemat różnicowy.
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej.
Czy błąd całkowity maleje gdy Dt maleje ? Czy maleje do zera?
jawna metoda Eulera niejawna metoda Eulera
Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem.
Ustaliliśmy, że do rozwiązywania równania adwekcji lepiej nadaje się mniej dokładny schemat upwind niż ten z ilorazem centralnym a=vdt/dx upwind: centralny:
yi b) metoda różnic skończonych
Stosowane modele równowagi ogólnej (CGE) Wykład 2.
Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x.
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RK o 50 lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania.
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
/ /61/3 1/6 Tabela Butchera dla klasycznej jawnej RK4.
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Metody matematyczne w Inżynierii Chemicznej
Analiza numeryczna i symulacja systemów
Jednorównaniowy model regresji liniowej
Teoria sterowania Materiał wykładowy /2017
Analiza obwodów z jednym elementem reaktancyjnym
Sterowanie procesami ciągłymi
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Zapis prezentacji:

u(0)=0 proste równanie traktowane jawnym schematem Eulera

niech  >> 0 szybkozmienna składowa wolnozmienna  prosty problem nieco skomplikujemy

rozwiązanie  krok dt=0.02 jest bardzo drobny w porównaniu ze skalą zmienności składowej parabolicznej krzyżyki : t 2 kółka : t 2 + exp(-100t)

rozwiązanie dokładne dt=0.019 dt=0.02 dt=0.021  krok dt=0.02 okazuje się zbyt długi gdy włączyć składową szybkozmienną nawet tam, gdy znika ona z rozwiązania

rozwiązanie dokładne dt=0.019 dt=0.02 dt=0.021  część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera nakłada ograniczenie na krok czasowy : u’=-  u  =100  dt<0.02, gdy szybkozmienna składowa zaniknie dt jest bardzo mały w porównaniu do skali zmienności u(t)

 t Re( )  t Im ( ) 1  t Re( )  t Im ( ) -2 1 metoda Eulera jawna niejawna metoda Eulera regiony stabilności metod Eulera w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma...

niejawna metoda Eulera: zastosowanie do problemu sztywnego dokładny dt=0.02 dt=0.04 rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże dla małych t można wstawić mniejsze dt, potem krok zwiększyć

Problemy sztywne (drętwe) (stiff, stiffness) Problem jest praktyczny i ścisłej definicji, która byłaby użyteczna, nie ma. Jedna z możliwych: problem jest sztywny, gdy stosując schemat jawny musimy przyjąć krok czasowy bardzo mały w porównaniu ze skalą zmienności funkcji. RRZ jest problemem sztywnym gdy: 1.Problem jest charakteryzowany bardzo różnymi skalami czasowymi 2.Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3.Metody jawne się nie sprawdzają. niech  >> 0 szybkozmienna składowa wolnozmienna

Problemy sztywne (drętwe) (stiff) Ogólna postać układu równań pierwszego rzędu wektor R n fcja R  R n  R Tylko niekiedy można podać rozwiązanie w zamkniętej formie analitycznej. Można, np. dla jednorodnego problemu liniowego problem najczęściej spotykany dla układ równań różniczkowych opisujących sprzężone procesy o bardzo różnych skalach czasowych

gdzie np. problem rozpadu promieniotwórczego Izotop 2 o stałej rozpadu 2 rozpada się promieniotwórczo na inny izotop 1 o stałej rozpadu 1 c j liczone z warunku początkowego y 1 (0)=0 y 2 (0)=1 dla niezdegenerowanych wartości własnych problemy sztywne wartości własne – 1, – 2 rozłożyć warunek początkowy na wektory własne

problemy sztywne gdy duża rozpiętość między minimalną a maksymalną wartością własną | max / min |>>1: wektor własny który odpowiada największej wartości własnej wygaśnie najprędzej, ale (dla metod jawnych) pozostawi najsilniejsze ograniczenie dla kroku czasowego (np. Euler, RK2 dt<2/| max |) jesteśmy zmuszeni przyjąć malutki krok w porównaniu z przebiegiem rozwiązania (w przeciwnym wypadku eksplozja) duże różnice skal czasowych

podobny do poprzedniego problem sztywny z liniowego równania drugiego rzędu o bliskich współczynnikach następny przykład: wartości / wektory własne: -1 / [-1,1] T / [1,-1000] T bardzo różne skale czasowe u’’+1001u’+1000u=0

szczególnie dotkliwy przypadek: równanie niejednorodne (bez rozwiązania analitycznego) Rozwiązanie będzie miało postać: stan przejściowy (wszystkie zgasną) stan ustalony wolnozmienny Na czym polega problem? : Rozwiązując problem numerycznie metodą jawną (Euler, RK2) musimy przyjąć krok czasowy  t < 2/| _max| aby uniknąć eksplozji rozwiązań nawet gdy wszystkie wyrazy z powyższej sumy w rozwiązaniu znikają problemy sztywne załóżmy, że wartości własne A są ujemne

y 2 (0)=1 y 1 (0)=0 1 =1/10 2 =1/ bardzo wolno się rozpada [taka i większa rozpiętość lambd typowa również dla reakcji chemicznych spotykana również dla układów elektrycznych] y 2 – izotop matka wolno rozpadająca się na y 1 y 1 – izotop szybko rozpadający się, niejednorodność: dodatkowo pewna ilość jest w stałym tempie doprowadzana z zewnątrz przy zaniedbywalnej wielkości 2 y 1 =0.5 spełnia pierwsze równanie

tol=0.001 t t tt automatyczna kontrola kroku czasowego dla jawnego RK2 z krokiem czasowym ustawianym przez ekstrapolację Richardsona tol= w obydwu przypadkach  t tylko chwilowo przekracza krytyczną wartość 2/(1/10)=20 zęby: zaakceptowane błędy y y t 1 =1/10 2 =1/10 000

RK / 1

Wzór trapezów stały krok, bardzo dłuuugi stały  t=200 nic złego się nie dzieje ze stabilnością w stanie „ustalonym” Zastosujmy metodę A-stabilną = wzór trapezów (p=2) t y

Wzór trapezów i krok automatycznie dobierany przez ekstrapolację Richardsona tol=0.01 kropki -tam gdzie postawiony krok Krok czasowy – zmienność 4 rzędów wielkości. raptem 10 kroków i załatwione! zamiast 10 4 kroków RK4 t t y y

trapezy (najdokładniejsza metoda A-stabilna spośród wielokrokowych) tt maksymalnie parę tysięcy metoda trapezów: jako A-stabilna radzi sobie nieźle z doborem kroku czasowego w problemach sztywnych – ale jest stosunkowo mało dokładna dokładniejsza A-stabilna pozwoliłaby stawiać jeszcze dłuższe kroki niestety = dokładniejszej A-stabilnej tej w klasie metod (liniowe wielokrokowe) nie ma dlatego : niejawne metody RK (jednokrokowe, nieliniowe) poziom jawnych RK t y t z tolerancją

trapezy z tolerancją (najdokładniejsza metoda A-stabilna spośród wielokrokowych) niejawna dwustopniowa metoda RK (rzędu 4) z tolerancją (A-stabilna) tt tt maksymalnie parę tysięcy maksymalnie kilkadziesiąt tysięcy t t tt y y

Mówimy, że RRZ jest problemem sztywnym gdy: 1.Problem jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3.Metody jawne się nie sprawdzają. Następny przykład: sztywny problem w pojedynczym równaniu: dla dużych t – rozwiązanie ustalone u(t)=cos(t) dwie bardzo różne skale czasowe 1) rozwiązania ustalonego okres 2pi 2) skala czasowa tłumienia „odchylenia od stanu ustalonego” exp(-100 t) – czasowa stała zaniku 0.01

z u(0)=2 rozwiązanie: „stacjonarne” u(t)=cos(t)  t < 2/|  | rozpoznajemy ograniczenie: Stały krok czasowy: jawny schemat Eulera

niejawny schemat Eulera – krok stały dt=0.1 dt=0.2 dt=0.5 tutaj: startowane od warunku u(0)=1

wyniki do uzyskania na laboratorium start u(0)=2,tolerancja 1e-2 niejawny, jawny, cos (t) niejawny jawny t niejawny Euler tolerancja 1e-3 niejawny, jawny, cos (t) tol1e-2 tol1e-3 tol 1e-6 akceptowane dt gdy wymagana b. duża dokładność niejawny stawia równie krótkie kroki co jawny, obydwie metody tego samego rzędu dokładności akceptowane dt

następny przykład: równanie swobodnego oscylatora van der Pola [historycznie = odkrycie deterministycznego chaosu w lampach firmy Philips aperiodyczne oscylacje przy periodycznym wymuszeniu ] ( =0 = zwykły o. harmoniczny) =100 jawny RK4 = zmienny krok czasowy =1 punkt u(t) policzony = krzyż po lewej: krzyże położone rozsądnie w porównaniu ze zmiennością rozwiązania po prawej: problem sztywny gładkie rozwiązanie a krzyże się zlewają u tt u

równanie: czasem sztywne czasem nie przydałoby się narzędzie do wykrywania sztywności np. dla podjęcia decyzji: tam gdzie sztywność = schemat niejawny tam gdzie nie = schemat jawny (tańszy) t u

Detekcja sztywności dla problemu nieliniowego (dla liniowego = wystarczy rozwiązać jednorodny problem własny) układ N równań (u,f-wektory) w chwili t rozwiązanie u * (t) rozwiązanie chwilę później opisane przez odchylenie  u(t) od u * u(t)= u * (t) +  u(t) linearyzacja: zakładamy, że odchylenie małe, rozwijamy f(t,u) względem u wokół f(t,u * ): [Taylor dla wektora] macierz Jakobiego [N na N]

u(t)= u * (t) +  u(t) po wyeliminowaniu problem zlinearyzowany w chwili t * : A=J(t * ) rozwiązać problem własny A: dostaniemy wartości własne i : Aby rachunek się powiódł:  t i musi leżeć w regionie stabilności używanej metody dla wszystkich i. Jeśli duża rozpiętość : problem będzie sztywny. -przybliżone zachowanie rozwiązania w okolicach t,u * (t)

Przykład: nieliniowy układ równań z warunkowo występującą sztywnością jeśli druga składowa u urośnie – macierz prawie diagonalna z szerokim zakresem wartości własnych - sztywność

Przykład detekcja sztywności dla: oscylatora van der Pola wartości własne:

t t niebieskie i czarne: części rzeczywiste wartości własnych =1 =100 dt t t jawny RK +automat dt w w

t t =1 =100 dt t t jawny RK +automat dt w w t u(t)

Metody RK – własności tabel Butchera 1)do regionów stabilności jawnych RK 2) do metod niejawnych RK ogólna dla metod jawnych w wersji ogólnej (niejawnej = sumowanie do s)

Metoda musi być dokładna dla rozwiązania stałego: w przeciwnym wypadku powstanie błąd lokalny O(  t) (metoda nie będzie zbieżna zerowy rząd zbieżności  ) jeśli f=0 to u n =u n-1 to mamy zawsze podobnie, jeśli rząd zbieżności 1 (jak Euler) lub więcej = wynik dokładny dla funkcji liniowej f=1 np RK4

zażądajmy aby rozwiązania pośrednie U i (dla chwili t n-1 +c i  t) były rzędu zbieżności pierwszego (nie gorsze niż Euler). Mają działać dokładnie dla f=1 i rozwiązania u=D+t, co daje: u(t+dt)=u(t)+dt dla RK4: / /61/3 1/6 rozwiązania pośrednie = mniej dokładne niż wynik końcowy, ale:

Zastosowanie do tabeli Butchera RK4: metoda RK rzędu dokładności p jeśli działać będzie dokładnie dla wielomianów stopnia p dla l=1,2,...,p z rozwiązaniem: wstawić / /61/3 1/6 ½= 1/6 *0 +1/3*1/2+1/3*1/2+1/6*1=3/6 1/3= 1/3 * ¼ +1/3 * ¼+1/6=2/6 ¼=1/3*1/8+1/3*1/8+1/6=1/12+1/6=3/12 dla l=5 prawa strona= warunki tego typu są konieczne, ale nie wystarczają do wyznaczenia całej tabeli B. można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody. l =1 poznajemy

można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody. [zapisujemy dla ogólnej, tj. ewentualnie niejawnej RK] u’= u w notacji wektorowej z oznaczeniami: (1) (2) z (2) eliminujemy U wstawiamy do (1)

u’= u dokładne rozwiązanie u(t)= exp(t) u n = exp(  t)u n-1 dokładne: RK: zrównując wyrazy tego samego rzędu w  t dla metody RK rzędu dokładności p czyli dla k=1,2,..,p

dla k=1,2,..,p k=1 k=2 wcześniej dowiedzieliśmy się, że dla l=2 da wzór po lewej (zał. że pośrednie min rzędu 2) oraz nowe niezależne warunki dostaniemy dla k>2

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego macierz A dla jawnych dolna trójkątna bez diagonali dla m  s dlatego: - możemy urwać drugą sumę współczynnik wzmocnienia dla jawnych RK jest wielomianem dla k=1,2,..,p

Liczba kroków a rząd zbieżności jawnych metod RK: rząd p minimalna liczba odsłon s czyli dla p  4 druga suma znika, mamy dokładnie: rozwiązanie dokładne u=exp( t) RK dokładności p dokładnie odtwarza pierwsze p wyrazów rozwinięcia Taylora rozwiązania dokładnego stąd współczynnik wzmocnienia dla RK1,RK2,RK3 i RK4 rząd dokładności liczba stopni (odsłon) metody zamiast 

Stabilność bezwzględna RK ponadto: dla p  4 mamy dla stabilności bezwzględnej: wniosek: region stabilności bezwzględnej jawnych metod RK o rzędzie dokładności nie większym niż 4 jest niezależny od wyboru a,b,c ! w szczególności dwie poznane metody rzędu drugiego: mają ten sam region stabilności

dt Im( ) dt Re( ) rejony bezwzględnej stabilności jawnych metod RK w s-odsłonach dla danego s – rejony identyczne dla wszystkich wariantów Euler RK2 rysunek skopiowany z Quarteroni: Numerical Mathematics zakres stabilności rośnie z rzędem dokładności zobaczymy, że przeciwnie niż dla liniowych formuł wielokrokowych! RK3/RK4 obejmują również fragment Re( )>0 dla rzeczywistego  region stabilności: dt RK1(-2,0) RK2(-2,0) RK3(-2.51,0) RK4(-2.78,0)