Dane INFORMACYJNE Nazwa szkoły:

Slides:



Advertisements
Podobne prezentacje
ZLICZANIE cz. I.
Advertisements

Dane informacyjne Nazwa szkoły: Zespół Szkół Technicznych w Kole
Zliczanie III.
Dane INFORMACYJNE Nazwa szkoły:
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH
Dane INFORMACYJNE (do uzupełnienia)
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt „AS KOMPETENCJI’’
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
MATEMATYCZNO FIZYCZNA
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Gimnazjum i Liceum im. Michała Kosmowskiego w Trzemesznie. ID grupy: 97_59_MF_G1 Opiekun: Aurelia Tycka-
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły: Międzyszkolna Grupa Projektowa
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane Informacyjne: Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH NR 1 „ELEKTRYK” W NOWEJ SOLI ID grupy: 97/56_MF_G1 Kompetencja: MATEMATYKA I FIZYKA Temat.
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Elementy kombinatoryki
DANE INFORMACYJNE Gimnazjum Nr 43 w Szczecinie ID grupy: 98/38_MF_G2
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
1.
„Zbiory, relacje, funkcje”
Rachunek prawdopodobieństwa
mgr Anna Walczyszewska
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół budowlanych im. Kazimierza Wielkiego w Szczecinie ID grupy: 97/26_mf_g1 Kompetencja: Matematyczno - fizyczna.
Dane INFORMACYJNE Nazwa szkoły: Gimnazjum w Polanowie im. Noblistów Polskich ID grupy: 98/49_MF_G1 Kompetencja: Fizyka i matematyka Temat.
DANE INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH IM J. MARCIŃCA W KOŹMINIE WLKP. ID grupy: 97/93_MF_G1 Opiekun: MGR MARZENA KRAWCZYK Kompetencja:
KOMBINATORYKA Zaczynamy……
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Ogólnokształcących
Problemy rynku pracy..
Statystyczny Uczeń Naszej Szkoły
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE (do uzupełnienia)
Dane INFORMACYJNE Nazwa szkoły:
RACHUNEK PRAWDOPODOBIEŃSTWA
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Kombinatoryka w rachunku prawdopodobieństwa.
Hałas wokół nas Dane INFORMACYJNE Nazwa szkoły:
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE Nazwa szkoły:
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
DANE INFORMACYJNE Nazwa szkoły:
DANE INFORMACYJNE 97_10_MF_G1 i 97_93_MF_G1 Kompetencja:
1.
Dane INFORMACYJNE Nazwa szkoły: ZESPÓŁ SZKÓŁ w BACZYNIE ID grupy:
Dane INFORMACYJNE Nazwa szkoły:
Dane INFORMACYJNE (do uzupełnienia)
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Dane INFORMACYJNE (do uzupełnienia)
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Zespół Szkół Ponadgimnazjalnych w Kleczewie ID grupy: 97_75_p_G2
DOŚWIADCZENIA LOSOWE.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
Publikacja jest współfinansowana przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Prezentacja jest dystrybuowana bezpłatnie Projekt.
ELEMENTY KOMBINATORYKI
HARALD KAJZER ZST nr 2 im. Mariana Batko
Projekt „ROZWÓJ PRZEZ KOMPETENCJE” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał.
Projekt „AS KOMPETENCJI” jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki.
Lepiej kombinować, czy wariować? Adam Kiersztyn Patrycja Jędrzejewska.
Zapis prezentacji:

Dane INFORMACYJNE Nazwa szkoły: Zespół Szkół Ponadgimnazjalnych im. gen. Władysława Andersa w Złocieńcu ID grupy: 97/37_mf_g1 Opiekun: Andrzej Pokrzywnicki Kompetencja: Matematyczno-fizyczna Temat projektowy: Metody kombinatoryczne w rachunku prawdopodobieństwa Semestr/rok szkolny: Semestr III 2010/2011

KOMBINATORYKA Dział matematyki zajmujący się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Najważniejszym jej zadaniem jest konstruowanie spełniających pewne określone warunki odwzorowań jednego zbioru skończonego w drugi oraz znajdowanie wzorów na liczbę tych odwzorowań. Metody kombinatoryki wykorzystywane są w wielu różnych działach matematyki, głównie w rachunku prawdopodobieństwa oraz teorii liczb.

PODSTAWOWE POJĘCIA : Silnia Symbol Newtona Permutacje Kombinacje Wariacje

oznacza iloczyn kolejnych liczb naturalnych od 1 do n. Silnia (n!) oznacza iloczyn kolejnych liczb naturalnych od 1 do n. n! = 1 · 2 · 3 · ... · n 0! = 1

Symbol Newtona dla n, k ∈ N i 0 ≤ k ≤ n oznacza liczbę określoną wzorem:

PERMUTACJA Permutacja zbioru skończonego jest to ustawienie wszystkich elementów tego zbioru w określonym porządku, czyli jest to wzajemnie jednoznaczne przekształcenie pewnego zbioru skończonego na siebie.

Permutacje dzielimy na: Permutacje bez powtórzeń Permutacje z powtórzeniami

Permutacja bez powtórzeŃ ( Pn) k-elementowa permutacja bez powtórzeń ze zbioru n- elementowego jest to każdy n-wyrazowy ciąg utworzony ze wszystkich elementów tego zbioru.

Permutacje z powtórzeniami Pn (k1 ,k2 ,…,ks ) Jeżeli zbiór Z składa się z n przedmiotów podzielonych na s grup, gdzie liczby elementów w poszczególnych grupach wynoszą odpowiednio k1 ,k2 ,…,ks i k1 +k2 +…+ks =n to liczba permutacji zbioru Z jest równa :

WARIANCJE DZIELIMY NA: Wariacje bez powtórzeń Wariacje z powtórzeniami

n- elementowego A , gdzie k ≤ n , jest to każdy WARIANCJE BEZ POWTÓRZEŃ k- wyrazowa wariacja bez powtórzeń ze zbioru n- elementowego A , gdzie k ≤ n , jest to każdy k- wyrazowy ciąg utworzony z różnych elementów zbioru A (elementy nie mogą się powtarzać)

WARIANCJE Z POWTÓRZENIAMI Wariacja k- wyrazowa z powtórzeniami ze zbioru n- elementowego A , to każdy k- wyrazowy ciąg utworzony z elementów zbioru A (elementy mogą się powtarzać)

kOMBINACJE Kombinacją k-elementową zbioru n-elementowego A nazywa się każdy k-elementowy podzbiór zbioru A (0 ≤ k ≤ n).

RACHUNEK PRAWDOPODOBIEŃSTWA Dział matematyki zajmujący się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. A doświadczenie jest losowe, jeżeli można je wielokrotnie powtarzać w tych samych warunkach i wyniku doświadczenia nie potrafimy z góry przewidzieć. Przykładem takich doświadczeń jest rzut monetą, rzut kostką do gry, losowanie karty z talii kart, itp. Pierwsze znane zagadnienia z rachunku prawdopodobieństwa dotyczyły gier hazardowych, w szczególności gry w kości. Mimo, że gra znana była już w starożytności, pierwsze teoretyczne zainteresowanie tą grą przejawiali dopiero matematycy francuscy z XVII w. Pierre de Fermat i Blaise Pascal. Podstawowymi pojęciami rachunku prawdopodobieństwa są: przestrzeń zdarzeń elementarnych, z jej elementami, doświadczenie oraz zdarzenie losowe, prawdopodobieństwo zajścia określonego zdarzenia.  

LOTERIE

LOTERIA FANTOWA Loterie fantowe, w których uczestniczy się przez nabycie losu lub innego dowodu udziału w grze, a podmiot urządzający loterię oferuje wyłącznie wygrane rzeczowe. Podmiot urządzający loterię fantową jest obowiązany zgłaszać pisemnie właściwemu naczelnikowi urzędu celnego zamiar zniszczenia losów, kartonów lub innych dowodów udziału w takiej grze co najmniej na 7 dni przed planowanym terminem przeprowadzenia tych czynności. Czynność zniszczenia podlega kontroli.

LOTTO Na kuponie Lotto zaznaczamy 6(k) liczb z 49(n). Za taki zakład płacimy 3 zł. Ile trzeba wypełnić kuponów, aby być pewnym wygranej i ile to będzie kosztowało? Wybierając sześć elementów ze zbioru 49 liczb tworzymy sześcioelementowe kombinacje zbioru 49 elementów. Liczbę zakładów obliczamy ze wzoru Za każdy zakład musimy zapłacić 3 zł, więc za 13 983 816 zakładów zapłacimy 41 951 448 zł, czyli prawie 42 mln złotych. 18

POKER Poker - gra karciana, rozgrywana talią składającą się z 52 kart, której celem jest wygranie pieniędzy od pozostałych uczestników lub żetonów (CHIPS) w wersji sportowej dzięki skompletowaniu najlepszego układu lub za pomocą tzw. blefu. Liczba graczy przy jednym stole ograniczona jest jedynie liczbą kart w talii, jednakże nie może być mniejsza niż dwóch. W praktyce nie gra się więcej niż w dziesięć osób. 19

Dość trudno być jak Mel Gibson w filmie „MAVERICK” POKER ZADANIE: Jakie jest prawdopodobieństwo wylosowania „pokera królewskiego” (Dziesiątka, Walet, Dama, Król i As w jednym kolorze) przy losowaniu pięciu kart bez zwracania z talii 52 kart? Rozwiązanie: 5 kart z talii można wylosować na Ω=52!/(5!*(52-5)!)=2 598 960 sposobów. Dziesiątka, Walet, Dama, Król i As w jednym kolorze można wybrać na A=4 sposoby. Prawdopodobieństwo wylosowania „pokera królewskiego” wynosi P(A)=4/ 2 598 960= 1,5390771693292701696063040600856*10-6 Około 0,0000015 Dość trudno być jak Mel Gibson w filmie „MAVERICK” 20

ZADANIA

ZADANIE Na ile sposobów można posadzić 7 osób na 7-miu numerowanych miejscach? Losujemy 7 elementów ze zbioru 7-mio elementowego, wylosowane osoby nie mogą się powtarzać (nie można dwa razy wylosować tej samej osoby), kolejność losowania jest istotna (miejsca są ponumerowane), mamy zatem 7-mio elementowe permutacje bez powtórzeń ze zbioru 7-mio elementowego. Permutacje bez powtórzeń są to takie wariacje bez powtórzeń, w których ilość losowanych elementów jest taka sama jak ilość elementów zbioru z którego losujemy. Czyli   V77 = P7 = 7! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5 040. Możliwych uporządkowań w zbiorze 7-mio elementowym jest 5 040. Zadanie możemy także rozwiązać rozumując w następujący sposób: Losujemy 7 osób: pierwszą osobę możemy wylosować na 7 sposobów, drugą osobę możemy wylosować na 6 sposobów, ponieważ jedna osoba już została wylosowana i jedno miejsce zostało zajęte, 5-tą osobę losujemy na 5 sposobów, 4-tą na 4 sposoby, trzecią na 3, drugą na 2 sposoby i ostatnią osobę możemy wylosować na 1 sposób. Mnożąc możliwości wylosowania wszystkich 7-miu osób mamy  1 * 2 * 3 * 4 * 5 * 6 * 7 = 7! = 5 040 sposobów. Odpowiedź: 7 osób na 7-miu ponumerowanych miejscach można posadzić na 5 040 sposobów

ZADANIE Na ile sposobów można kupić 6 produktów w piekarni oferującej rogaliki, pączki, bajaderki i napoleonki? ROZWIĄZANIE Na pierwszy rzut oka powinniśmy zastosować kombinacje. Niestety po podstawieniu do wzoru okaże się, że mamy do obliczenia silnię z liczby ujemnej (!!!) Problem należy rozwiązać przez zastosowanie „znaczników” rozdzielających wybór rodzaju produktu. 1 2 Wariant 1 oznacz wybranie 2 rogalików, 1 pączka, 2 bajaderek i 1 napoleonki. Wariant 2 oznacza wybranie 6 pączków. R P B N P

KOMBINATORYKA JEST ŁATWA!!! …chyba!?!?! Pozostaje więc Nam obliczyć na ile sposobów można wstawić znaczniki. Jest ich 3 – do tego dochodzi 6 produktów z cukierni – więc losujemy 3 miejsca z 9. ODPOWIEDZ: Takiego zakupu można dokonać na 84 sposoby. KOMBINATORYKA JEST ŁATWA!!! …chyba!?!?!