Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.

Slides:



Advertisements
Podobne prezentacje
T47 Podstawowe człony dynamiczne i statyczne
Advertisements

Metody badania stabilności Lapunowa
Obserwowalność System ciągły System dyskretny
Systemy liniowe stacjonarne – modele wejście – wyjście (splotowe)
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Systemy dynamiczne 2012/2013Odpowiedzi – modele stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły; model.
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne 2010/2011Odpowiedzi – macierze tranzycji Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System ciągły;
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Systemy dynamiczne – przykłady modeli fenomenologicznych
UKŁADY SZEREGOWO-RÓWNOLEGŁE
Klasyfikacja systemów
Transformacja Z (13.6).
Pytania konkursowe.
Opis matematyczny elementów i układów liniowych
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji.
Teoria sterowania Wykład 3
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Wykład 12 Metoda linii pierwiastkowych. Regulatory.
AUTOMATYKA i ROBOTYKA (wykład 4)
Podstawowe elementy liniowe
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Wykład 7 Charakterystyki częstotliwościowe
KOLEKTOR ZASOBNIK 2 ZASOBNIK 1 POMPA P2 POMPA P1 30°C Zasada działanie instalacji solarnej.
Analiza wpływu regulatora na jakość regulacji (1)
Analiza wpływu regulatora na jakość regulacji
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Dekompozycja Kalmana systemów niesterowalnych i nieobserwowalnych
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Wykład 22 Modele dyskretne obiektów.
Wykład 8 Charakterystyki częstotliwościowe
Wykład 23 Modele dyskretne obiektów
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Modelowanie – Analiza – Synteza
Stabilność Stabilność to jedno z najważniejszych pojęć dynamiki systemów i teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym.
  Prof.. dr hab.. Janusz A. Dobrowolski Instytut Systemów Elektronicznych, Politechnika Warszawska.
Schematy blokowe i elementy systemów sterujących
Wykład nr 1: Wprowadzenie, podstawowe definicje Piotr Bilski
Sterowanie – metody alokacji biegunów
Testogranie TESTOGRANIE Bogdana Berezy.
Przykład 1: obiekt - czwórnik RC
Systemy dynamiczne 2014/2015Odpowiedzi – systemy liniowe stacjonarne  Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 System.
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Maciej Gwiazdoń, Mateusz Suder, Szymon Szymczk
Elementy geometryczne i relacje
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Podstawy automatyki 2015/2016 Dynamika obiektów - modele 1 Podstawy automatyki.
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
Wstęp do układów elektronicznych
Zapis prezentacji:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Transmitancja widmowa i charakterystyki częstotliwościowe Interesuje nas: Odpowiedź obiektu liniowego stacjonarnego na wymuszenie sinusoidalne Potrafimy już znajdować: Odpowiedź w dziedzinie czasu, na dowolne wymuszenie i przy dowolnych warunkach początkowych Odpowiedź w dziedzinie zmiennej zespolonej s, na dowolne wymuszenie i przy dowolnych warunkach początkowych Przypadek szczególny: zerowy warunek początkowy, prowadzi do pojęcia transmitancji operatorowej R.R. G(s) u(t) y(t) U(s) Y(s)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 2 Przykładowy obiekt: Model matematyczny:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3 Dla: gdzie: Odpowiedź operatorowa układu:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4 Znajdźmy odpowiedź naszego przykładowego układu na wymuszenie sinusoidalne Interesują nas odpowiedzi na pytania: czy odpowiedź układu będzie sinusoidalna dla t 0 (ogólnie dla t t 0, gdzie t 0 - chwila początkowa obserwacji) co można będzie powiedzieć o stosunku amplitud sygnału wyjściowego i wejściowego - wzmocnieniu co można będzie powiedzieć o kątach fazowych sygnału wyjściowego i wejściowego – przesunięciu fazowym

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5 Przedstawmy równanie różniczkowe modelu układu w postaci: Rozwiązanie tego równania u wy (t) (odpowiedź układu) dla dowolnego wymuszenia u we (t) ma postać (patrz poprzednie wykłady): (*)(*) Składowa swobodna odpowiedzi Składowa wymuszona odpowiedzi

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6 Jaka będzie odpowiedź układu, jeżeli wymuszenie będzie miało postać: (**)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7 Podstawiając (**) do (*) Można pokazać (dobre zadanie do samodzielnego wykonania), że odpowiedź układu na sinusoidalne wymuszenie ma postać: Wniosek: odpowiedź układu na wymuszenie sinusoidalne nie jest sinusoidalna dla dowolnego t 0

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8 Jeżeli interesujemy się odpowiedzią układu dla chwil t wystarczająco odległych od chwili t>>0 takich, że składowa swobodna będzie pomijalnie mała: sygnał odpowiedzi układu na wymuszenie wyniesie Odpowiedź częstotliwościowa układu

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9 Wejście Wyjście gdzie: Wnioski: Odpowiedź ustalona układu liniowego stacjonarnego pobudzanego sygnałem sinusoidalnym o częstotliwości kątowej jest również sygnałem sinusoidalnym o tej samej częstotliwości

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 10 Wejście Wyjście gdzie: Wnioski: Amplituda odpowiedzi ustalonej układu jest różna od amplitudy wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 11 Wejście Wyjście gdzie: Wnioski: Kąt fazowy odpowiedzi ustalonej układu jest różny od kąta fazowego wymuszenia i zależy od częstotliwości kątowej ω sygnału wymuszającego (poza oczywistą zależnością od parametrów układu)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 12 =

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 13 Policzmy: a. Stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego b. Różnicę kątów fazowych sygnału wyjściowego i sygnału wejściowego

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 14 Amplituda sygnału wejściowego: Amplituda sygnału wyjściowego: a. Stosunek amplitud:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 15 Kąt fazowy sygnału wejściowego: Kąt fazowy sygnału wyjściowego: b. Różnica kątów fazowych:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 16 Wróćmy do opisu dynamiki przykładowego układu za pomocą transmitancji operatorowej G(s) jest funkcją zespoloną zmiennej zespolonej s =σ+jω W szczególności jej wartości można obliczać dla s=jω

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 17 Policzmy zatem wartości G dla s=j Możemy poszukiwać dla przedstawienia w postaciach używanych dla liczb zespolonych

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 18 Przykład 1: ReG(jω)ImG(jω) |G(jω)| G(jω) Przypomnieć sobie zasady rachunku liczb zespolonych!!!

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 19 Przykład 2: ReG(jω) ImG(jω)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 20 Wykonajmy eksperyment – policzmy dla pokazanego na początku układu RL transmitancję dla s=j Moduł: Faza:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 21 Porównanie: Wniosek:!!! Transmitancja dla s=j zawiera pełną informację o odpowiedziach częstotliwościowych (ustalonej odpowiedzi wymuszonej na sygnał sinusoidalny) układu dynamicznego dla różnych pulsacji ω - z odpowiedzi częstotliwościowej- z transmitancji widmowej

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 22 Stąd: Transmitancja dla s=j stosowana jest jako narzędzie analizy układów dynamicznych i nosi nazwę transmitancji widmowej Definicja transmitancji widmowej

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 23 Matematycznie: G(jω) odwzorowuje dziedzinę (oś) pulsacji ω płaszczyznę zespoloną

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 24 - wzmocnienie amplitudowe, moduł - przesunięcie fazowe, faza Stosowane nazwy:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 25 Przykład 3:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 26 Przykład 3: c.d. Dyskusja: Jeżeli dla to Jeżeli dla to Element inercyjny zmniejsza amplitudę i wprowadza opóźnienie fazowe

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 27 Człon inercyjny jako filtr dolnoprzepustowy Dwustronnie odwrotne przekształcenie Laplacea

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 28 Odpowiedź na wymuszenie skokowe o amplitudzie A Wzmocnienie statyczne Stała czasowa styczna w t = t 0 Transmitancja widmowa Moduł: Faza: Część rzeczywista P( ) Część urojona Q( )

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 29 a) charakterystyka (częstotliwościowa) amplitudowa b) charakterystyka (częstotliwościowa) fazowa

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 30 Przykład 4: Mamy, Niech wymuszenie: wykorzystamy zasadę superpozycji

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 31 Skorzystamy z właściwości działań na liczbach zespolonych przedstawionych w postaci wykładniczej Dla sygnału wymuszającego: Odpowiedź ustalona: W dziedzinie częstotliwości dla obiektu o transmitancji G(j ): W przykładzie:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 32 Po podstawieniu danych przykładu: Składowa wymuszenia (wejścia) o częstotliwości poza przepustowością filtru została odrzucona!

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 33 Dlaczego interesują nas odpowiedzi częstotliwościowe? sygnały sinusoidalne są często wymuszeniami układów Dowolne sygnały dobrze aproksymują się za pomocą szeregów Fouriera Możliwość eksperymentalnego wyznaczenia transmitancji widmowej

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 34

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 35 Formy graficznego przedstawiania transmitancji widmowej – charakterystyki częstotliwościowe Znane są następujące charakterystyki częstotliwościowe charakterystyka amplitudowo – fazowa zwana charakterystyką Nyquista

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 36 charakterystyka amplitudowa (a) charakterystyka fazowa (b)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 37 charakterystyka składowej rzeczywistej transmitancji (a) charakterystyka składowej urojonej transmitancji (b)

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 38 charakterystyka logarytmiczna amplitudowa (a) charakterystyka logarytmiczna fazowa (b) zwane wykresami Bodea

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 39

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 40 Charakterystyki amplitudowo – fazowe; wykresy Nyquista

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 41 Przykład 5:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 42

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 43 Charakterystyki logarytmiczne amplitudy i fazy; wykresy Bodea Transmitancję dowolnego elementu można przedstawić:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 44

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 45

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 46 Przykładowo:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 47 Szkicując charakterystyki asymptotyczne przyjmuje się zwykle zgrubnie:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 48 Charakterystyki amplitudy

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 49 Charakterystyka błędu modułu

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 50 Charakterystyki fazy

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 51 Charakterystyki rzeczywiste i asymptotyczne

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 52 Przykład 6: ω 1 = 10

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 53 Przykład 7: ω 1 = 10

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 54 Przykład 8:

Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 55 Dokładność aproksymacji: