Rozkłady wywodzące się z rozkładu normalnego standardowego

Slides:



Advertisements
Podobne prezentacje
Przykład liczbowy Rozpatrzmy dwuwymiarową zmienną losową (X,Y), gdzie X jest liczbą osób w rodzinie, a Y liczbą izb w mieszkaniu. Niech f.r.p. tej zmiennej.
Advertisements

Regresja i korelacja materiały dydaktyczne.
Funkcje tworzące są wygodnym narzędziem przy badaniu zmiennych losowych o wartościach całkowitych nieujemnych. Funkcje tworzące pierwszy raz badał de.
Joanna Sawicka Wydział Nauk Ekonomicznych, Uniwersytet Warszawski
Statystyka Wojciech Jawień
Estymacja. Przedziały ufności.
Analiza współzależności zjawisk
Obserwowalność System ciągły System dyskretny
Rachunek prawdopodobieństwa 2
Zmienne losowe i ich rozkłady
Analiza wariancji jednoczynnikowa
Zmienne losowe i ich rozkłady
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
BUDOWA MODELU EKONOMETRYCZNEGO
Jak mierzyć asymetrię zjawiska?
Statystyczne parametry akcji
Statystyczne parametry akcji
Statystyka w doświadczalnictwie
BIOSTATYSTYKA I METODY DOKUMENTACJI
Analiza korelacji.
Wykład 4 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 3 Wzór Bayesa – wpływ rozkładu a priori.
Wykład 3 Rozkład próbkowy dla średniej z rozkładu normalnego
Wykład 3 Wzór Bayesa, cd.: Wpływ rozkładu a priori.
Elementy Rachunku Prawdopodobieństwa c.d.
Metody Przetwarzania Danych Meteorologicznych Wykład 4
Wykład 4. Rozkłady teoretyczne
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Hipotezy statystyczne
Podstawy statystyki Dr Janusz Górczyński.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Analiza współzależności cech statystycznych
dr hab. Ryszard Walkowiak prof. nadzw.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
BADANIE STATYSTYCZNE Badanie statystyczne to proces pozyskiwania danych na temat rozkładu cechy statystycznej w populacji. Badanie może mieć charakter:
Podstawy analizy matematycznej II
Elementy Rachunku Prawdopodobieństwa i Statystyki
Statystyka – zadania 4 Janusz Górczyński.
Zagadnienia regresji i korelacji
Podstawy analizy matematycznej I
Elementy Rachunku Prawdopodobieństwa i Statystyki
Kilka wybranych uzupelnień
Planowanie badań i analiza wyników
FUNKCJE Opracował: Karol Kara.
Ekonometryczne modele nieliniowe
FUNKCJE Pojęcie funkcji
Co to jest dystrybuanta?
Ekonometryczne modele nieliniowe
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Wnioskowanie statystyczne
Zagadnienia AI wykład 2.
STATYSTYKA Pochodzenie nazwy:
Elementy geometryczne i relacje
Metody Matematyczne w Inżynierii Chemicznej Podstawy obliczeń statystycznych.
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
MODELOWANIE ZMIENNOŚCI CEN AKCJI
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
Jak mierzyć asymetrię zjawiska? Wykład 5. Miary jednej cechy  Miary poziomu  Miary dyspersji (zmienności, zróżnicowania, rozproszenia)  Miary asymetrii.
Statystyczna analiza danych
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Przeprowadzenie badań niewyczerpujących, (częściowych – prowadzonych na podstawie próby losowej), nie daje podstaw do formułowania stanowczych stwierdzeń.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
STATYSTYKA – kurs podstawowy wykład 11
Statystyka matematyczna
Regresja wieloraka – bada wpływ wielu zmiennych objaśniających (niezależnych) na jedną zmienną objaśnianą (zależą)
Jednorównaniowy model regresji liniowej
Zmienna losowa. Wybrane rozkłady zmiennej. Przedział ufności.
Zapis prezentacji:

Rozkłady wywodzące się z rozkładu normalnego standardowego Bardzo ważną rolę w statystyce odgrywają trzy rozkłady zmiennych losowych bazujące na zmiennych o standardo- wych rozkładach normalnych. Są to następujące rozkłady: 1. 2 - (Chi-kwadrat) 2. t-Studenta 3. F-Fishera-Snedecora. Ze statystykami opartymi na tych rozkładach związane są takie działy statystyki jak: przedziały ufności, weryfikacja hipotez, analiza wariancji i regresji.

Rozkład Chi-kwadrat Zmienna losowa X ma rozkład Chi-kwadrat Pearsona, jeżeli jej funkcja gęstości prawdopodobieństwa dana jest wzorem: Wielkość v występująca w podanym wyżej wzorze jest jednocześnie wartością oczekiwaną tej zmiennej, a jej podwojona wartość jest wariancją zmiennej:

Rozkład Chi-kwadrat (c.d.) Jeżeli zmienne xi mają wszystkie standardowy rozkład normalny N(0; 1) i są niezależne, to zmienna: ma rozkład chi-kwadrat. Liczbę v nazywamy liczbą stopni swobody, wskazuje ona liczbę niezależnych składników zmiennej , jest jednocześnie wartością oczekiwaną tej zmiennej losowej. Wariancja tej zmiennej jest równa 2v.

Rozkład Chi-kwadrat (c.d.) Poniżej podane są wykresy funkcji gęstości prawdopodo-bieństwa zmiennej dla trzech wybranych stopni swobody.

Rozkład t-Studenta Zmienna losowa t ma rozkład t-Studenta, jeśli jej funkcja gęstości prawdopodobieństwa dana jest wzorem: Liczba v jest liczbą stopni swobody, a parametrami rozkładu tej zmiennej losowej są odpowiednio:

Rozkład t-Studenta (c.d.) Jeżeli zmienne losowe są nie-zależnymi zmiennymi losowymi o standardowym rozkładzie normalnym, to zmienna: ma rozkład t-Studenta z liczbą stopni swobody v.

Rozkład t-Studenta (c.d.) Poniżej podane są przykładowe wykresy funkcji gęstości rozkładu t-Studenta dla trzech wybranych stopni swobody.

Rozkład F-Fishera-Snedecora Zmienna losowa X ma rozkład F-Fishera-Snedecora, jeżeli jej funkcja gęstości prawdopodobieństwa dana jest wzorem: gdzie u i v są liczbami stopni swobody. Parametrami zmiennej losowej F-Fishera-Snedecora są odpowiednio:

Rozkład F-Fishera-Snedecora (c.d.) Jeżeli zmienne losowe i są niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym, to zmienna: ma rozkład F-Fishera-Snedecora z liczbami stopni swobody u i v.

Rozkład F-Fishera-Snedecora (c.d.) Poniżej podane są przykładowe wykresy funkcji gęstości rozkładu F-Fischera-Snedecora dla trzech wybranych par stopni swobody

Wielowymiarowe zmienne losowe

Wprowadzenie Niech E będzie zbiorem zdarzeń elementarnych danego ekspery-mentu. Układ n funkcji (X1, X2, ..., Xn) przyporządkowujących każdemu zdarzeniu elementarnemu eE n liczb rzeczywistych (x1, x2, ..., xn) nazywamy zmienną losową n-wymiarową. Przykład: W badaniach sytuacji finansowej rodzin analizujemy takie cechy jak: x1 - liczbę członków rodziny; x2 - dochód na członka; x3 - liczbę izb w mieszkaniu. Wyniki pomiarów dla poszczególnych rodzin, uporządkowane w podany wyżej sposób można traktować jako realizację 3-wymia-rowej zmiennej losowej (X1, X2, X3).

Dwuwymiarowe zmienne losowe Zmienne losowe (dwuwymiarowe) wielowymiarowe mogą być zarówno skokowe jak i ciągłe. Dwuwymiarowa zmienna losowa (X, Y) jest typu skokowego, jeżeli przyjmuje skończoną lub przeliczalną liczbę wartości (xi, yj) z odpowiednimi prawdopodobieństwami pij. Rozkład dwuwymiarowej zmiennej losowej typu skokowego może być określony funkcją rozkładu prawdopodobieństwa:

Dwuwymiarowe zmienne losowe Rozkład dwuwymiarowej zmiennej losowej typu skokowego może być także określony funkcją dystrybuanty:

Przykład liczbowy Rozpatrzmy dwuwymiarową zmienną losową (X,Y), gdzie X jest liczbą osób w rodzinie, a Y liczbą izb w mieszkaniu. Niech f.r.p. tej zmiennej będzie dana tabelką 1 2 3 pi. 1 0,06 0,03 0,04 0,13 2 0,07 0,04 0,13 0,24 3 0,07 0,06 0,20 0,33 4 0,05 0,12 0,13 0,30 p.j 0,25 0,25 0,50 1,00 Y X

Rozkłady brzegowe Rozkład jednej tylko zmiennej, X lub Y, bez względu na rozkład drugiej, będziemy nazywali rozkładem brzegowym tej zmiennej. Rozkłady brzegowe są rozkładami jednowymiarowymi, a ich f.r.p. określone są następująco:

Niezależność zmiennych losowych Dwuwymiarowe zmienne losowe skokowe (X,Y) są niezależne, jeżeli: dla każdego i,j. Dla dwuwymiarowych zmiennych losowych dowolnego typu warunek niezależności można zdefiniować następująco: zmienne losowe (X,Y) są niezależne wtedy i tylko wtedy, gdy F(x,y)=F(x)F(y)

Rozkłady warunkowe W przypadku rozkładów dwuwymiarowych istnieje możli-wość określenia rozkładu jednej zmiennej pod warunkiem, że druga zmienna przyjmie określone wartości. Warunkowe funkcje rozkładu prawdopodobieństwa określone są następująco:

Warunkowe funkcje prawdopodobieństwa Obliczając warunkowe f.r.p. dla zmiennej losowej Y w naszym przykładzie otrzymamy: 1 2 3 1 0,46 0,23 0,31 1 2 0,29 0,17 0,54 1 3 0,21 0,18 0,61 1 4 0,17 0,40 0,43 1

Parametry rozkładu dwuwymiarowej zmiennej losowej Momentem zwykłym rzędu k+l (k, l = 0, 1,...) dwuwymiarowej zmiennej losowej (X,Y) typu skokowego nazywamy wyrażenie: Z powyższego wynika, że istnieją dwa momenty rzędu pierwszego m10 i m01, przy czym m10=EX oraz m01=EY, tym samym momenty te są wartościami oczekiwanymi w rozkładach brzegowych zmiennych X i Y.

Parametry rozkładu (c.d.) Podobnie istnieją trzy momenty rzędu drugiego: m20=EX2; m02=EY2; m11=EXY Przykład: Obliczając momenty rzędu pierwszego i drugiego w naszym przykładzie otrzymujemy: m10=EX=1 • 0,13 + 2 • 0,24 + 3 • 0,33 + 4 • 0,30 = 2,8 m01=EY=1 • 0,25 + 2 • 0,25 + 3 • 0,50 = 2,25 m20=EX2=12 • 0,13+22 • 0,24+32 • 0,33+42 • 0,30 = 0,13+0,96+2,97+4,80 = 8,86 m02=EY2=12 • 0,25 + 22 • 0,25 + 32 • 0,50 = 0,25 + 1,00 + 4,50 = 5,75 m11=EXY=1 • 1 • 0,06 + 1 • 2 • 0,03 +1 • 3 • 0,04+2 • 1 • 0,07+ 2 • 2 • 0,04 + + 2 • 3 • 0,13 +3 • 1 • 0,07 +3 • 2 • 0,06 +3 • 3 • 0,20+ + 4 • 1 • 0,05 + 4 • 2 • 0,12 + 4 • 3 • 0,13 = 0,24 + 1,08 + 2,37 + 2,72 = 6,41

Parametry rozkładu (c.d.) Momentem centralnym rzędu k+l (k, l = 0, 1,...) dwuwy-miarowego rozkładu zmiennej losowej (X,Y) typu skokowego nazywamy wyrażenie:

Obliczanie momentów centralnych Z definicji momentu centralnego wynika, że: Istnieje jeszcze jeden moment centralny rzędu drugiego: Moment ten nazywamy kowariancją i oznaczamy symbolem CXY.

Związki między momentami Między momentami centralnymi a zwykłymi zachodzą związki: Można udowodnić, że jeżeli zmienne losowe (X,Y) są niezależne, to kowariancja jest równa zero. O zmiennych (X,Y), dla których CXY=0 mówimy, że są nieskorelowane.

Współczynnik korelacji Z kowariancją związany jest jeszcze jeden parametr rozkładu dwuwymiarowego, tzw. współczynnik korelacji zmiennych losowych (X,Y): Z własności kowariancji wynika następująca własność współczynnika korelacji: Współczynnik korelacji jest miarą siły związku między zmiennymi losowymi.

Obliczenia momentów centralnych i współczynnika korelacji Korzystając ze związków między momentami otrzymujemy w naszym przykładzie: Możemy już obliczyć współczynnik korelacji:

Warunkowe wartości oczekiwane Warunkową wartością oczekiwaną zmiennej losowej Y przy warunku, że zmienna X = xi nazywamy wyrażenie: Analogicznie definiujemy warunkową wartość oczekiwaną zmiennej X:

Obliczanie warunkowych wartości oczekiwanych Obliczmy warunkowe wartości oczekiwane zmiennej losowej Y w naszym przykładzie. Kolejno otrzymujemy: E(Y/X=1)=10,46+20,23+30,31=1,85 E(Y/X=2)=10,29+20,17+30,54=2,25 E(Y/X=3)=10,21+20,18+30,61=2,40 E(Y/X=4)=10,17+20,40+30,43=2,26

Funkcja regresji I rodzaju Warunkowe wartości oczekiwane zmiennej Y zależą od wartości zmiennej X, są pewną funkcją tej zmiennej. Funkcję tę możemy zapisać następująco: Tak określoną funkcję nazywamy funkcją regresji I rodzaju zmiennej losowej Y względem zmiennej losowej X. W naszym przykładzie funkcję tę można zapisać następująco:

Wykres funkcji regresji I rodzaju

Funkcja regresji II rodzaju W praktyce najwygodniej jest zastąpić nieliniowe krzywe regresji I rodzaju funkcjami liniowymi, jeżeli tylko takie przybliżenie jest wystarczające. Spośród wszystkich możliwych prostych wybieramy taką, dla której średnie odchylenie kwadratowe wartości danej zmiennej od tej prostej jest minimalne:

Funkcja regresji II rodzaju (c.d.) Rozwiązując ten warunek otrzymujemy: Parametr b nazywamy współczynnikiem regresji liniowej zmiennej Y względem X. W naszym przykładzie otrzymujemy: Tym samym prosta regresji ma postać:

Wykres funkcji regresji II rodzaju