Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.

Slides:



Advertisements
Podobne prezentacje
Modelowanie i symulacja
Advertisements

Rozwiązywanie równań różniczkowych metodą Rungego - Kutty
Metody badania stabilności Lapunowa
Metody numeryczne część 1. Rozwiązywanie układów równań liniowych.
Różniczkowanie numeryczne
Metody rozwiązywania układów równań liniowych
ATOM WODORU, JONY WODOROPODOBNE; PEŁNY OPIS
Metoda elementów skończonych cd.
Metody Numeryczne Wykład no 12.
Wykład no 9.
Metody numeryczne wykład no 2.
Metody Numeryczne Wykład no 3.
Wykład no 11.
Problemy nieliniowe Rozwiązywanie równań nieliniowych o postaci:
Metoda węzłowa w SPICE.
ZLICZANIE cz. II.
Metody matematyczne w Inżynierii Chemicznej
Metoda różnic skończonych I
Stabilność Stabilność to jedna z najważniejszych właściwości systemów dynamicznych W większości przypadków, stabilność jest warunkiem koniecznym praktycznego.
RUCH HARMONICZNY F = - mw2Dx a = - w2Dx wT = 2 P
Metody matematyczne w Inżynierii Chemicznej
Metody Lapunowa badania stabilności
AUTOMATYKA i ROBOTYKA (wykład 6)
Metody numeryczne SOWIG Wydział Inżynierii Środowiska III rok
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Zakładamy a priori istnienie rozwiązania α układu równań.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy analizy matematycznej I
Sterowanie – metody alokacji biegunów III
Drgania punktu materialnego
Metody matematyczne w Inżynierii Chemicznej
Tematyka zajęć LITERATURA
Całkowanie różniczkowego równania ruchu metodą Newmarka
Wstęp do metod numerycznych
Metody nieinkluzyjne: Metoda iteracji prostej.
Metody rozwiązywania układów równań liniowych
jawny schemat Eulera [globalny błąd O(Dt)]
region bezwzględnej stabilności dla ogólnej niejawnej metody RK
Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na.
Szacowanie błędu lokalnego w metodach jednokrokowych
Symulacje obliczeniowe: w technice: inżynieria obliczeniowa: modelowanie i symulacja zjawisk i działania urządzeń. badania i optymalizacji procesów produkcyjnych.
U(t) t  t u’(t)=f(t,u) u(t+  t)=u(t)+  (t,u(t),  t) RRZ: Jednokrokowy schemat różnicowy.
inżynierskie metody numeryczne
Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej.
Czy błąd całkowity maleje gdy Dt maleje ? Czy maleje do zera?
jawna metoda Eulera niejawna metoda Eulera
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Jawny schemat Eulera Czy błąd całkowity maleje gdy  t maleje ? Czy maleje do zera? eksperyment numeryczny problem początkowy: u’= u, u(0)=1 z rozwiązaniem.
yi b) metoda różnic skończonych
Na szczęście nie jesteśmy skazani na iterację funkcjonalną 2)metoda Newtona-Raphsona (stycznych) szukamy zera równania nieliniowegoF(x) F(x n +  x)=F(x.
Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RK o 50 lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania.
DALEJ Sanok Spis treści Pojęcie funkcji Sposoby przedstawiania funkcji Miejsce zerowe Monotoniczność funkcji Funkcja liniowa Wyznaczanie funkcji liniowej,
© Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej MATEMATYCZNE MODELOWANIE PROCESÓW BIOTECHNOLOGICZNYCH Temat – 5 Modelowanie różniczkowe.
Rozpatrzmy następujące zadanie programowania liniowego:
Modelowanie i podstawy identyfikacji
Teoria sterowania Wykład /2016
Metody matematyczne w Inżynierii Chemicznej
Analiza numeryczna i symulacja systemów
Podstawy automatyki I Wykład /2016
Drgania punktu materialnego Prowadzący: dr Krzysztof Polko
ETO w Inżynierii Chemicznej
Teoria sterowania Materiał wykładowy /2017
Analiza obwodów z jednym elementem reaktancyjnym
Sterowanie procesami ciągłymi
U(0)=0 proste równanie traktowane jawnym schematem Eulera.
Zapis prezentacji:

Problem opisany RRZ jest sztywny gdy: jest charakteryzowany różnymi skalami czasowymi. 2.Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3.Metody jawne się nie sprawdzają. sztywny problem w pojedynczym równaniu: dla dużych t – rozwiązanie ustalone u(t)=cos(t) dwie bardzo różne skale czasowe 1) rozwiązania ustalonego okres 2pi 2) skala czasowa tłumienia „odchylenia od stanu ustalonego” exp(-100 t) – czasowa stała zaniku 0.01

z u(0)=2 rozwiązanie: ustalone u(t)=cos(t)  t < 2/|  | rozpoznajemy ograniczenie: Stały krok czasowy: jawny schemat Eulera

niejawny schemat Eulera – krok stały dt=0.1 dt=0.2 dt=0.5 tutaj: startowane od warunku u(0)=1

wyniki do uzyskania na laboratorium start u(0)=2,tolerancja 1e-2 niejawny, jawny, cos (t) niejawny jawny t niejawny Euler tolerancja 1e-3 niejawny, jawny, cos (t) tol1e-2 tol1e-3 tol 1e-6 akceptowane dt gdy wymagana b. duża dokładność schemat niejawny stawia równie krótkie kroki co jawny, obydwie metody tego samego rzędu dokładności akceptowane dt

następny przykład: równanie swobodnego oscylatora van der Pola [historycznie = odkrycie deterministycznego chaosu w lampach firmy Philips aperiodyczne oscylacje przy periodycznym wymuszeniu ] ( =0 = zwykły o. harmoniczny) =100 jawny RK4 = zmienny krok czasowy =1 punkt u(t) policzony = krzyż po lewej: krzyże położone rozsądnie w porównaniu ze zmiennością rozwiązania po prawej: problem sztywny gładkie rozwiązanie a krzyże się zlewają u tt u

Równanie oscylatora van der Pola : czasem sztywne czasem nie przydałoby się narzędzie do wykrywania sztywności np. dla podjęcia decyzji: tam gdzie sztywność = schemat niejawny tam gdzie nie = schemat jawny (tańszy) t u

Detekcja sztywności dla problemu nieliniowego (dla liniowego = wystarczy rozwiązać jednorodny problem własny) układ N równań ( u,f -wektory) w chwili t rozwiązanie u * (t) rozwiązanie chwilę później opisane przez odchylenie du(t) od u * u(t)= u * (t) + du(t) linearyzacja : zakładamy, że odchylenie małe, rozwijamy f(t,u) względem u wokół f(t,u * ) : [Taylor dla wektora] macierz Jakobiego [ N na N ]

u(t)= u * (t) + du(t) po wyeliminowaniu problem zlinearyzowany w chwili t * : A=J(t * ) rozwiązać problem własny A : dostaniemy wartości własne i : Aby rachunek się powiódł:  t i musi leżeć w regionie stabilności używanej metody dla wszystkich i. Jeśli duża rozpiętość : problem będzie sztywny. -przybliżone zachowanie rozwiązania w okolicach t,u * (t)

Przykład: nieliniowy układ równań z warunkowo występującą sztywnością jeśli druga składowa u urośnie – macierz prawie diagonalna z szerokim zakresem wartości własnych - sztywność

Przykład detekcja sztywności dla: oscylatora van der Pola wartości własne:

t t niebieskie i czarne: części rzeczywiste wartości własnych =1 =100 dt t t jawny RK +automat dt w w

t t =1 =100 dt t t jawny RK +automat dt w w t u(t)

Metody RK cd. 1)bezwzględna stabilność metod RK 2)konstrukcja niejawnych metod RK (metoda kolokacji) 3)metody niejawne: klasyfikacja a tabele Padé współczynników wzmocnienia 4)rozwiązywanie równań predyktora dla metod niejawnych

Metody RK – własności tabel Butchera 1)do regionów stabilności jawnych RK 2) do metod niejawnych RK ogólna dla metod jawnych w wersji ogólnej (niejawnej = sumowanie do s)

Metoda musi być dokładna dla rozwiązania stałego: w przeciwnym wypadku powstanie błąd lokalny O(  t) (metoda nie będzie zbieżna zerowy rząd zbieżności  ) jeśli f=0 to u n =u n-1 to mamy zawsze podobnie, jeśli rząd zbieżności 1 (jak Euler) lub więcej = wynik dokładny dla funkcji liniowej f=1 np RK4

zażądajmy aby rozwiązania pośrednie U i (dla chwili t n-1 +c i  t) były rzędu zbieżności pierwszego (nie gorsze niż Euler). Mają działać dokładnie dla f=1 i rozwiązania u=D+t, co daje: u(t+dt)=u(t)+dt dla RK4: / /61/3 1/6 rozwiązania pośrednie = mniej dokładne niż wynik końcowy, ale:

Zastosowanie do tabeli Butchera RK4: metoda RK rzędu dokładności p jeśli działać będzie dokładnie dla wielomianów stopnia p dla l=1,2,...,p z rozwiązaniem: wstawić / /61/3 1/6 ½= 1/6 *0 +1/3*1/2+1/3*1/2+1/6*1=3/6 1/3= 1/3 * ¼ +1/3 * ¼+1/6=2/6 ¼=1/3*1/8+1/3*1/8+1/6=1/12+1/6=3/12 dla l=5 prawa strona= warunki tego typu są konieczne, ale nie wystarczają do wyznaczenia całej tabeli B. można podać więcej rozważając inne równania i wykorzystując założony rząd dokładności metody. l =1 poznajemy

można podać więcej warunków rozważając inne równania i wykorzystując założony rząd dokładności metody p. Rozwinięcia w szereg Taylora metody i rozwiązania konkretnego równania mają zgadzać się do wyrazu z  t p włącznie. u’= u w notacji wektorowej z oznaczeniami: (1) (2) z (2) eliminujemy U wstawiamy do (1)

u’= u dokładne rozwiązanie u(t)= exp(t) u n = exp(  t)u n-1 dokładne: RK: zrównując wyrazy tego samego rzędu w  t dla metody RK rzędu dokładności p czyli dla k=1,2,..,p

dla k=1,2,..,p k=1 k=2 wcześniej dowiedzieliśmy się, że dla l=2 da wzór po lewej (zał. że pośrednie min rzędu 2) ora z nowe niezależne warunki dostaniemy dla k>2

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego dla k=1,2,..,p

stabilność bezwzględna jawnych metod RK u’= u z oznaczeniem z= t dostaniemy wg wcześniejszej analizy metoda RK rzędu p dokładnie odtwarza p pierwszych wyrazów r.T rozwiązania dokładnego macierz A dla jawnych dolna trójkątna bez diagonali dla m  s dlatego: - możemy urwać drugą sumę współczynnik wzmocnienia dla jawnych RK jest wielomianem dla k=1,2,..,p

Liczba kroków a rząd zbieżności jawnych metod RK: rząd p minimalna liczba odsłon s czyli dla p  4 druga suma znika, mamy dokładnie: rozwiązanie dokładne u=exp( t) RK dokładności p dokładnie odtwarza pierwsze p wyrazów rozwinięcia Taylora rozwiązania dokładnego stąd współczynnik wzmocnienia dla RK1,RK2,RK3 i RK4 rząd dokładności liczba stopni (odsłon) metody zamiast 

Stabilność bezwzględna RK ponadto: dla p  4 mamy dla stabilności bezwzględnej: wniosek: region stabilności bezwzględnej jawnych metod RK o rzędzie dokładności nie większym niż 4 jest niezależny od wyboru a,b,c ! w szczególności dwie poznane metody rzędu drugiego: mają ten sam region stabilności

dt Im( ) dt Re( ) rejony bezwzględnej stabilności jawnych metod RK w s-odsłonach dla danego s – rejony identyczne dla wszystkich wariantów Euler RK2 rysunek skopiowany z Quarteroni: Numerical Mathematics zakres stabilności rośnie z rzędem dokładności zobaczymy, że przeciwnie niż dla liniowych formuł wielokrokowych! RK3/RK4 obejmują również fragment Re( )>0 dla rzeczywistego  region stabilności: dt RK1(-2,0) RK2(-2,0) RK3(-2.51,0) RK4(-2.78,0)

RK / 1 RK3/RK4 obejmują również fragment Re( )>0 dla rzeczywistego  region stabilności: dt RK1(-2,0) RK2(-2,0) RK3(-2.51,0) RK4(-2.78,0) przypomnienie:

Region stabilności jawnych metod RK jest ograniczony funkcja pod modułem jest wielomianem (skończone rozwinięcie w szereg Taylora) każdy wielomian ucieka do nieskończoności gdy z daleko od początku układu wsp. (niezależnie od kierunku na płaszczyźnie Gaussa) dla szerszych regionów bezwzględnej stabilności: niejawne metody RK dla niejawnych RK druga suma może ustablizować rozbieżność pierwszej dla dużego |z|

niejawna metoda Rungego-Kutty w jednej odsłonie [jawny RK w jednej odsłonie= jawny schemat Eulera] aby wyznaczyć współczynniki b 1 =b, c 1 =c, a 11 =a rozwijamy metodę RK w Taylora względem t n-1 i u(t n-1 ) i porównujemy z rozwiązaniem dokładnym liczone w t n-1, u(t n-1 ) wstawić wyżej celujemy w błąd lokalny O(  t 3 )

liczone w t n-1, u(t n-1 ) wstawić wyżej

niejawna metoda Rungego-Kutty w jednej odsłonie (będzie stopnia 2) b=1 c=a=1/2 do porównania z rozwinięciem dokładnego rozwiązania (poprzedni wykłady)

niejawna metoda Rungego-Kutty w jednej odsłonie (będzie stopnia 2) b=1 c=a=1/2 do porównania z rozwinięciem dokładnego rozwiązania (3 wykłady wstecz) zamiast Taylora mogliśmy użyć warunków koniecznych: s

niejawna metoda Rungego-Kutty w jednej odsłonie (stopnia 2) b=1 c=a=1/2 1) „predyktor” = niejawny Euler do połowy kroku czasowego (rozwiązać trzeba jak pokazywaliśmy) 2) „korektor” wykonać krok wg „reguły punktu środowego” z U 1 policzonym niejawnym Eulerem niejawna metoda punktu środkowego

niejawna metoda punktu środkowego NJRK (jednostopniowa f – tylko w jednej chwili) jawna metoda punktu środkowego RK2 (dwustopniowa – znaczy f wzywane w 2 chwilach czasowych): predyktor = jawny Euler korektor = punkt środkowy 1) „predyktor” = niejawny Euler do połowy kroku czasowego 2) wykonać krok wg „reguły punktu środowego” z U 1 porównanie metod RK drugiego rzędu = jawnej i niejawnej 1/ ½ 0 01

region bezwzględnej stabilności niejawnej metody punktu środkowego u’= u, z=  t Re(z)  0 jest A-stabilna, ale metodę 2 rzędu dokładności już mieliśmy (trapezów) (gdy rozwiniemy w Taylora 1+z+z 2 /2+z 3 /4 [zamiast 6] wsp. wmocnienia=funkcja wymierna

niejawna metoda Rungego-Kutty w jednej odsłonie (metoda rzędu dokładności 2) 1/2 1 tabela Butchera maksymalny rząd metody RK w s odsłonach wynosi 2s najdokładniejsza niejawna metoda Rungego-Kutty w 2 odsłonach - rząd dokładności 4 jak jawne RK4 dla najdokładniejszych niejawnych RK nie używamy chwili t n-1, ani chwili t n tylko c danych przez mapowanie zer wielomianów Legendre’a do przedziału [0,1] (patrz dalej)

zajmiemy się pojedynczym krokiem czasowym t n-1 do t n poszukujemy wielomianu, który interpoluje a) wartość funkcji w chwili początkowej b) równanie różniczkowe w 2 dyskretnych punktach wartość tego wielomianu w chwili t n wyprodukuje przepis na u n poszukiwany wielomian, który spełnia warunek początkowy i nachylenie (f) w 2 chwilach t u dokładna u dofitowany wielomian Metody kolokacji dla zwyczajnego równania różniczkowego u’=f

najpierw przykład, potem uogólnienie: zajmiemy się pojedynczym krokiem czasowym t n-1 do t n wielomian, który interpoluje a) wartość funkcji w chwili początkowej b) równanie różniczkowe w 2 dyskretnych punktach jego wartość w chwili t n produkuje u n 3 warunki  potrzebna parabola poszukiwany wielomian, który spełnia warunek początkowy i nachylenie (f) w 2 chwilach t u w(t n )=u n

wzór trapezów (dlatego rzędu 2: dokładny dla paraboli!) Metody kolokacji dla zwyczajnego równania różniczkowego u’=f najpierw przykład, potem uogólnienie: zajmiemy się pojedynczym krokiem czasowym t n-1 do t n wielomian, który interpoluje a) wartość funkcji w chwili początkowej b) równanie różniczkowe w 2 dyskretnych punktach jego wartość w chwili t n produkuje u n 3 warunki  potrzebna parabola poszukiwany wielomian, który spełnia warunek początkowy i nachylenie (f) w 2 chwilach t u w(t n )=u n

Niejawne metody Rungego-Kutty można uzyskać na drodze kolokacji (zakładamy c szukamy a i b) poszukujemy przybliżonego rozwiązania problemu początkowego w postaci wielomianu stopnia s do wykonania kroku: w(tn) zobaczymy jak generować metody RK: wejście = chwile pośrednie [c] wyjście = wagi a i b

Niejawne metody Rungego-Kutty można uzyskać na drodze kolokacji (zakładamy c szukamy a i b) poszukujemy przybliżonego rozwiązania problemu początkowego w postaci wielomianu stopnia s do wyznaczenia (s+1) współczynników wielomianu: ma spełniać warunek początkowy i równanie różniczkowe w i=1,2,...s wybranych punktach w przedziale [t n-1,t n ] wybór definiowany przez c i  [0,1] u) do wykonania kroku: w(tn)

Interpolujemy pochodną w wielomianem interpolacyjnym Lagrange’a w chwilach czasowych t n-1 +c j  t z gdzie wielomian węzłowy Lagrange’a

scałkowana pochodna + warunek początkowy daje na końcu przedziału: jak RK pod warunkiem, że włożyliśmy c dostaliśmy b jeszcze a do wyznaczenia

pochodna scałkowana do  + warunek początkowy daje wstawić do: jak w RK pod warunkiem że

Mamy przepis na uzyskiwanie a i b z c wybór punktów kolokacji : t n-1 +c i  t = tak aby uzyskać maksymalny rząd dokładności albo np L-stabilność tabela Butchera dla najdokładniejszej niejawnej RK (2 odsłony, rząd 4): A oraz b w tabeli Butchera wynikają z wyboru punktów kolokacji c po przesunięciu t o t n-1 : po podstawieniu  =t’/  t podobnie: wyrażenia, na a i b są niezależne od kroku czasowego:

b1b1 b2b2 a 11 a 12 b1 b2 c1 c2 itd. współczynniki w tabeli Butchera dla niejawnych RK można uzależnić od punktów kolokacji

z teorii kwadratur Gaussa -- maksymalny dokładność [do całkowania wielomianów stopnia 2s-1 ] uzyskujemy wybierając punkty kolokacji (Gaussa) w s zerach wielomianów Legendre’a. 2 punkty: Gauss scałkuje dokładnie w’(t) – gdy ta będzie wielomianem stopnia 3, stąd 4-ty rząd metody RK 2 punkty Gaussa: dokładnie scałkujemy do wielomianu trzeciego stopnia dla 2 punktów wybranych jak popadło – dokładnie tylko do pierwszego stopnia P 2 w przedziale [-1,1] ma zera w  sqrt(3) / 3 Przedział [-1,1] w [0,1] mapowany wg. t := (x+1)/2 co daje punkty kolokacji niejawnej metody RK maksymalnej dokładności mamy przepis na generacje tablic Butchera z zer wielomianów Legendre’a