Instytut Filozofii UMCS

Slides:



Advertisements
Podobne prezentacje
Prawo odbicia.
Advertisements

Efekty relatywistyczne
Wykład Transformacja Lorentza
Wykład 19 Dynamika relatywistyczna
Reinhard Kulessa1 Wykład Środek masy Zderzenia w układzie środka masy Sprężyste zderzenie centralne cząstek poruszających się c.d.
Studia niestacjonarne II
Szczególna teoria względności
FALE Równanie falowe w jednym wymiarze Fale harmoniczne proste
Andrzej Radosz Instytut Fizyki
GPS a teoria względności Einsteina
WYKŁAD 3 KORPUSKULARNY CHARAKTER PROMIENIOWANIA ELEKTROMAGNETYCZNEGO (efekt fotoelektryczny i efekt Comptona, światło jako fala prawdopodobieństwa) D.
WYKŁAD 6 ATOM WODORU W MECHANICE KWANTOWEJ (równanie Schrődingera dla atomu wodoru, separacja zmiennych, stan podstawowy 1s, stany wzbudzone 2s i 2p,
Szczególna teoria względności
Podstawowy postulat szczególnej teorii względności Einsteina to:
Fale t t + Dt.
Czym jest i czym nie jest fala?
ŚWIATŁO.
Efekty relatywistyczne
Szczególna teoria względności
Festiwal Nauki w Centrum Fizyki Teoretycznej PAN
WYKŁAD 15 INTERFEROMETRY; WYBRANE PRZYKŁADY
WYKŁAD 06 dr Marek Siłuszyk
Wykład XII fizyka współczesna
Zasada względności Galileusza
Wykład VI dr hab. Ewa Popko
Fale.
Wykład III Fale materii Zasada nieoznaczoności Heisenberga
Relatywistyczne skrócenie długości
Wykład 16 Ruch względny Bąki. – Precesja swobodna i wymuszona
Indukcja elektromagnetyczna
, Prawo Gaussa …i magnetycznego dla pola elektrycznego…
FIZYKA dla studentów POLIGRAFII Wykład 10 Zjawiska relatywistyczne
Szczególna teoria względności
Szczególna teoria względności Co jest a co nie jest względne?
?.
Wprowadzenie do fizyki
Efekty relatywistyczne. Bartosz Jabłonecki Doświadczenie 1 - motorówki płyną do portu.
Mity i Prawda o Szczególnej Teorii Względności
Szczególna teoria względności
„Fizyka także może być ciekawa, czyli...”
Co to jest teoria względności?
Jak istnieje czas? Andrzej Łukasik Zakład Ontologii i Teorii Poznania
Czasoprzestrzeń szczególnej i ogólnej teorii względności
Fizyka Relatywistyczna
Jak istnieje czas? Andrzej Łukasik Zakład Ontologii i Teorii Poznania
Pomiary prędkości światła
Z Wykład bez rysunków ri mi O X Y
Dynamika układu punktów materialnych
Einstein (1905) Postulaty Szczególnej Teorii Względności
Kot Schroedingera w detektorach fal grawitacyjnych
Dynamika bryły sztywnej
Podstawy i filozoficzne zagadnienia teorii względności
Fale de broglie’a Zjawisko comptona dyfrakcja elektronów
WYKŁAD 11 ZJAWISKA DYFRAKCJI I INTERFERENCJI ŚWIATŁA; SPÓJNOŚĆ
WYKŁAD 5 OPTYKA FALOWA OSCYLACJE I FALE
Jak istnieje czas? Andrzej Łukasik Zakład Ontologii i Teorii Poznania
Dynamika punktu materialnego Dotychczas ruch był opisywany za pomocą wektorów r, v, oraz a - rozważania geometryczne. Uwzględnienie przyczyn ruchu - dynamika.
Dynamika punktu materialnego
Dylatacja czasu Załóżmy, że w rakiecie znajduje się przyrząd wysyłający impuls światła z punktu A, który następnie odbity przez lustro Z, odległe od A.
Efekt fotoelektryczny
Doświadczenie Michelsona i Morley’a Michał Gojny IV GiG WGiG
Doświadczenie Michelsona i Morley’a Wykonała: Kaja Rodkiewicz Studia II stopnia, I rok GiG Wydział: Górnictwa i Geoinżynierii Grupa
Transformacja Lorentza Wydział Górnictwa i Geoinżynierii Kierunek: Górnictwo i Geologia Michał Jekiełek.
Teoria względności Dylatacja czasu Fizyka dla Liceum Lekcje multimedialne Marian Kozielski Warszawa 2006 Fragmenty lekcji.
Czasoprzestrzeń szczególnej i ogólnej teorii względności
Elementy fizyki kwantowej i budowy materii
Szczególna teoria względności
Teoria względności Alberta Einsteina
Uniwersytet Marii Curie-Skłodowskiej
Uniwersytet Marii Curie-Skłodowskiej
Zapis prezentacji:

Instytut Filozofii UMCS Filozofia przyrody Wykład 4. Czasoprzestrzeń szczególnej teorii względności Andrzej Łukasik Instytut Filozofii UMCS http://bacon.umcs.lublin.pl/~lukasik lukasik@bacon.umcs.lublin.pl

Równania Maxwella, 1864 XIX w. – mechanicyzm: świat jako maszyna, mechanika klasyczna jako podstawowa nauka Michael Faraday – pojęcie pola James Clerk Maxwell równania elektrodynamiki klasycznej fale elektromagnetyczne (przewidywania teoretyczne) Heinrich Hertz doświadczalne odkrycie fal elektromagnetycznych Trudności mechanicznej interpretacji fal elektromagnetycznych Eter jako wszystko przenikający ośrodek, w którym rozchodzą się fale elektromagnetyczne Problem: eter jest przenikliwy (nie stawia oporu planetom itd.), a jednocześnie bardzo sztywny (przenosi fale o dużych częstościach)

Eter Eter – nieważki i sprężysty ośrodek, będący nośnikiem fal elektromagnetycznych (sądzono, że wszelkie fale są zaburzeniem pewnego ośrodka – np. fale na wodzie polegają na drganiach cząsteczek wody, fale elektromagnetyczne byłyby drganiami eteru…) Równania Maxwella nie są niezmiennicze względem transformacji Galileusza Dziwne własności eteru: Eter powinien być bardzo gęsty, aby mogły się w nim rozchodzić fale z prędkością światła Eter powinien być bardzo rzadki, aby swobodnie mogły poruszać się w nim planety i inne ciała Eter stanowiłby absolutny układ odniesienia, spoczywający w przestrzeni absolutnej Jeśli istnieje eter, to można dokonać pomiaru ruchu Ziemi (względem eteru, a zatem i względem przestrzeni absolutnej, „wiatr eteru”)

Eksperyment Michelsona-Morley’a Albert Abraham Michelson (1852-1931) ur. w Strzelnie na Kujawach Edward Morley (1838-1923)

Istota eksperymentu Prędkość światła c = 300 000 km/s (względem czego? — eteru?) Ponieważ prędkość orbitalna Ziemi względem Słońca v = 30 km/s, to również prędkość Ziemi powinna wynosić ok. 30 km/s W przeciwnym wypadku należałoby założyć, że Ziemia jest nieruchoma (powrót do Ptolemeusza?) Prędkość światła powinna zleżeć od prędkości ruchu Ziemi (c’ = c  30 km/s) v/c = 1/10 000 Michelson i Morley mierzyli czas, w jakim światło przebywa znaną odległość Idea prosta, trudności techniczne w realizacji… …stąd zastosowanie interferometru

Schemat interferometru Wiązka światła zostaje rozdzielona na dwie, z których jedna porusza się w kierunku ruchu Ziemi względem eteru, druga – w kierunku prostopadłym (pokonując takie same odległości) Po wielokrotnym odbiciu od zwierciadeł wiązki trafiają do lunety, gdzie powstaje obraz interferencyjny

Interferencja Zjawisko typowe dla ruchu falowego (fale na wodzie, dźwięk, światło) Jeśli grzbiet jednej fali spotyka się z grzbietem drugiej (drgania zgodne w fazie) otrzymujemy wzmocnienie drgań (interferencja konstruktywna) Jeśli grzbiet jednej fali spotyka się z doliną drugiej (drgania niezgodne w fazie) otrzymujemy osłabienie drgań (interferencja destruktywna) Dla światła otrzymujemy charakterystyczne prążki interferencyjne

Jeśli interferometr porusza się względem eteru, powinniśmy otrzymać przesunięcie prążków interferencyjnych w stosunku do układu, który otrzymalibyśmy, gdyby interferometr spoczywał Zgodnie z transformacją Galileusza prędkość światła powinna zależeć od ruchu Ziemi względem do eteru: c’ = v + c

Równolegle do kierunku ruchu Prostopadle do kierunku ruchu Stosunek czasów

Obrót interferometru o 90 stopni Jeśli R1 jest równoległe do kierunku ruchu Ziemi, to obrocie będzie prostopadłe (analogicznie R2) Dla R1 po obrocie czas przelotu światła będzie krótszy o Dla R2 po obrocie czas przelotu światła wydłuży się o

Właśnie takie przesunięcie zamierzali zaobserwować Michelson i Morley Zatem czas przelotu obu sygnałów w wyniku obrotu interferometru zmienia się o Dane liczbowe: długości ramienia interferometru l = 0,6 m prędkość orbitalna Ziemi v = 3 104 m/s długość fali światła widzialnego λ = 3 10-7 m odpowiada to przesunięciu sygnału o c ∆T = 3 108 m/s 4 10-17 s = 1,2 10-8 m przesunięcie prążków interferencyjnych: 1,2 10-8/3 10-7 = 0,04 długości fali Właśnie takie przesunięcie zamierzali zaobserwować Michelson i Morley Rezultaty (1881): przesuniecie było znacznie mniejsze Współcześnie v (Ziemi względem eteru) < 0.001 v orbitalnej!

Czas i przestrzeń w szczególnej teorii względności Albert Einstein, Zur Elektrodynamik bewegter Kőrper, „Annalen der Physik” 1905, 17, s. 891-921 (O elektrodynamice ciał w ruchu) Szczególna teoria względności dotyczy wyłącznie inercjalnych układów odniesienia „bezowocne usiłowania wykrycia ruchu Ziemi względem eteru sugerują, że zjawiska elektromagnetyczne, podobnie jak mechaniczne nie mają żadnych własności odpowiadających idei absolutnego spoczynku” (Albert Einstein)

Szczególna zasada względności 1. Postulat względności: Dla wszystkich obserwatorów w inercjalnych układach odniesienia prawa fizyki są takie same. Żaden nie jest wyróżniony. Rozszerzenie zasady względności Galileusza (która dotyczy praw mechaniki na wszystkie prawa fizyki, w tym prawa elektromagnetyzmu) 2. Postulat stałej prędkości światła: We wszystkich inercjalnych układach odniesienia i we wszystkich kierunkach światło rozchodzi się w próżni z tą samą prędkością c. c = 299 792 458 m/s [w przybliżeniu c = 3 x 108 m/s , 1080 mln km/h] Prędkość światła w próżni jest maksymalną prędkości, z jaką mogą rozchodzić sygnały i stanowi absolutną granicę prędkości, z jaką mogą się poruszać jakiekolwiek obiekty. Halliday, Resnick, Walker, Podstawy fizyki, t. 4 s.147

Ruch w STW odbywa się w czasoprzestrzeni – jeśli obiekt spoczywa w pewnym układzie odniesienia, porusza się tylko w czasie, jeżeli w tym układzie odniesienia porusza się, część jego ruchu zmienia się na ruch w przestrzeni i czas i jego układzie odniesienia płynie wolniej (por. B. Greene, Struktura kosmosu, 61) „…sumaryczna prędkość jakiegokolwiek ruchu ciała w przestrzeni i jego ruchu w czasie jest zawsze dokładnie równa prędkości światła” (B. Greene, Struktura kosmosu, 61)

Względność równoczesności Przykład: wysłanie fotonu ze środka wagonu w przeciwne strony Z punktu widzenia układu A (pociągu) foton dociera do obydwu końców wagonu równocześnie W każdym układzie foton porusza się z prędkością c, ale wagon porusza się z prędkością v (w prawo) względem obserwatora spoczywającego Z punktu widzenia układu B (torów) foton dociera najpierw do końca wagonu później do początku Równoczesność zdarzeń zależy od układu odniesienia (jest względna)

Dylatacja czasu Czas w układzie poruszającym się płynie wolniej (tzn. zegar związany z poruszającym się układem chodzi wolniej w stosunku do identycznego zegara spoczywającego) czas własny

Kontrakcja Fitzgeralda-Lorentza Długość ciała w ruchu jest mniejsza niż długość ciała w spoczynku (długość własna) kula spoczywająca kula w ruchu

Rozpad mionu – potwierdzenie efektów STW Miony μ powstają w górnych warstwach atmosfery (ok. 10 km) w rezultacie zderzeń cząstek promieniowania kosmicznego z atmosferą tμ = 2,2 x 10-6 s (czas własny, tzn. w układzie spoczynkowym mionu) Gdyby vμ = c (300 000 km/s), to mion mógłby przebyć odległość = 600 m Ale miony docierają do powierzchni Ziemi Z układu odniesienia związanego z Ziemią czas życia mionu wynosi 1,5 x 10-5 s i jest wystarczający, by mion pokonał dystans 10 km (czas życia wydłuża się ok. 15 razy) Z układu odniesienia mionu tμ = 2,2 x 10-6 s, ale skraca się odległość, jaką ma do pokonania do powierzchni Ziemi ( s = 600 m)

„Poglądy na temat czasu i przestrzeni, które chcę państwu przedstawić, wyrosły na glebie fizyki doświadczalnej i w tym kryje się ich siła. Są to poglądy radykalne. Od tej pory czas i przestrzeń rozważane każde oddzielnie są skazane na odejście w cień, a przetrwa tylko połączenie tych dwóch wielkości”. (Herman Minkowski)

Czasoprzestrzeń Minkowskiego Interwał czasoprzestrzenny: Interwał czasowy Interwał zerowy Interwał przestrzenny zdarzenia nie mogą być powiązane związkami przyczynowo-skutkowymi

Transformacja Lorentza Prawa fizyki są niezmiennicze względem transformacji Lorentza Transformacja Lorentza zachowuje odległości w czasoprzestrzeni Dla małych prędkości otrzymujemy transformację Galileusza:

Relatywistyczne składanie prędkości Prędkość w układzie U’ = u’ Prędkość w układzie U Relatywistyczne składanie prędkości nie jest algebraicznym dodawaniem Dla u’ = c: prędkość światła w każdym układzie wynosi c

Stałość prędkości światła w próżni i granice poznania c = 300 000 km/s jest maksymalną prędkością rozchodzenia się sygnałów w przyrodzie Dla dowolnego zdarzenia w czasoprzestrzeni Minkowskiego istnieją rejony czasoprzestrzeni dla niego nieosiągalne Np. Słońce widzimy takim, jakie było ok. 8 min 21 s temu, nie możemy wpłynąć na to, co „teraz” stanie się na Słońcu… Najbliższą gwiazdę widzimy taką, jak była 4 lata temu… Obserwowalny Wszechświat – ok. 100 mld lat świetlnych średnicy

Transformacja Lorentza dla pary zdarzeń

Jeśli zdarzenia równoczesne (∆t’=0) zachodzą w U’ w różnych miejscach (∆x’≠0), to nie są równoczesne w U (względność równoczesności): Jeśli zdarzenia w U’ zachodzą w tym samym miejscu (∆x’=0), ale w różnym czasie (∆t’≠0 = ∆t0), to ∆t w układzie U wynosi (dylatacja czasu):

Jeśli pręt sztywny spoczywa w U’, to ∆x’=L0 jest jego długością własną W układzie U, względem którego pręt się porusza ∆x można uznać za jego długość L, wtw gdy jego współrzędne zostaną zmierzone równocześnie (∆t = 0); wówczas: Skrócenie długości

Podobnie jak z punktu widzenia mechaniki newtonowskiej, można wypowiedzieć dwa zgodne twierdzenia: tempus est absolutum, spatium est absolutum, tak z punktu widzenia szczególnej teorii względności musimy stwierdzić: continuum spatii et temporis est absolutum. W tym ostatnim twierdzeniu absolutum znaczy nie tylko „fizycznie rzeczywiste”, ale również „niezależne pod względem własności fizycznych, oddziałujące fizycznie, ale nie podlegające wpływom warunków fizycznych”. (Albert Einstein)

Filozoficzne interpretacje czasoprzestrzeni STW Eternalizm – czas jest jedynie wymiarem, zarówno przeszłe zdarzenia jak i przyszłe istnieją tak samo realnie, jak teraźniejsze, odrzucenie obiektywności „upływu czasu”; block universe (wszechświat Parmenidesowy); czasoprzestrzeń istnieje jako czterowymiarowa realność Transjentyzm – pogląd zakładający realność upływu czasu

Czas i przestrzeń w STW - podsumowanie Problem: uogólnienie teorii względności na układy nieinercjalne Czas jest względny Przestrzeń jest względna Czasoprzestrzeń jest absolutna

Zalecana literatura D. Halliday, R. Resnick, J. Walker, Podstawy fizyki, t 4, r. 38 Teoria względności L. N. Cooper, Istota i struktura fizyki, r. 29, 30 R. B. Angel, Relativity: The Theory and its Philosophy, r. 3 The Principle of Special Relativity M. Heller, T. Fabjan, Elementy filozofii przyrody, r. 8 Czas i przestrzeń w szczególnej teorii względności

Repetytorium Wyjaśnij fizyczny sens równań Maxwella. Jakie problemy wiązały się z koncepcją eteru? Opisz doświadczenie Michelsona-Morley’a. Sformułuj szczególną zasadę względności. Wyjaśnij względność równoczesności zdarzeń. Na cym polega dylatacja czasu? Co to jest kontrakcja Lorentza? Porównaj transformację Galileusza z transformacją Lorentza. Jakie są empiryczne potwierdzenia szczególnej teorii względności. Wyjaśnij pojęcie czasoprzestrzeni. Przedyskutuj podział na przeszłość, przyszłość i gdzie indziej w czasoprzestrzeni Minkowskiego w zależności od wartości interwału czasoprzestrzennego.