Liczby pierwsze Liczbą pierwszą nazywamy każdą liczbę naturalną n większą od 1, której jedynymi dzielnikami są 1 oraz n. Początkowe liczby pierwsze to : 2,3,5,7,11,13,17,19,... . Euklides ok. 365 p.n.e – ok. 300 p.n.e Już grecki matematyk Euklides wykazał, że istnieje nieskończenie wiele liczb pierwszych. Posłużył się w tym celu tzw. dowodem „nie wprost” .
Euklides udowodnił, że: Liczby pierwsze w matematyce mają podobne znaczenie , jak w fizyce cząsteczki materii. To cegiełki, podstawowe klocki, z których można zbudować liczby złożone, czyli liczby naturalne większe od 1, które nie są liczbami pierwszymi. Euklides udowodnił, że: Każdą liczbę naturalną n > 1 można w jeden tylko sposób przedstawić w postaci iloczynu liczb pierwszych ( z dokładnością do kolejności ich występowania w tym rozkładzie). np. 12 = 2.2.3 75900 = 2.2.3.5.5.11.23
Pobity został kolejny rekord poszukiwań liczb pierwszych. Dwudziestoletni Kanadyjczyk Michael Cameron znalazł największą taką liczbę ze znanych obecnie. Odkrycie zostało dokonane 14 listopada 2001 r. Liczba ta składa się z 4053946 cyfr i ma postać 213466917 - 1, Gdyby spróbować wydrukować ją w książce formatu A – 5, to książka ta musiałaby mieć co najmniej 1000 stron.
Jak szukamy liczb pierwszych ? Przepis, obecnie nazywany sitem Eratostenesa, stosowano już w starożytności i... tak naprawdę to do dziś praktycznie nie wymyślono nic szybszego i bardziej skutecznego. Metoda jest bardzo prosta: wypisujemy kolejne liczby naturalne, począwszy od dwójki (dopóty, dopóki nam starczy cierpliwości). Następnie skreślamy wszystkie liczby podzielne przez dwa, oprócz niej samej. Potem wybieramy pierwszą nie skreśloną liczbę (będzie to oczywiście 3) i skreślamy wszystkie większe liczby przez nią podzielne i tak dalej. Sito Eratostenesa "przesiewa" wszystkie liczby naturalne mniejsze od pewnej ustalonej liczby i pozostawia tylko liczby pierwsze, choć to przesiewanie jest dosyć żmudne.