Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe

Slides:



Advertisements
Podobne prezentacje
Metody badania stabilności Lapunowa
Advertisements

Nieliniowa metoda najmniejszych kwadratów
Obserwowalność System ciągły System dyskretny
Systemy stacjonarne i niestacjonarne (Time-invariant and Time-varing systems) Mówimy, że system jest stacjonarny, jeżeli dowolne przesunięcie czasu  dla.
Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Sieć jednokierunkowa wielowarstwowa
Mechanizm wnioskowania rozmytego
Katedra Informatyki Stosowanej UMK
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Inteligencja Obliczeniowa Perceptrony
Sztuczne sieci neuronowe
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Czy potrafimy obliczyć wartość wyjścia sieci znając wartości jej wejść? Tak, przy założeniu, że znamy aktualne wartości wag i progów dla poszczególnych.
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Perceptrony proste liniowe - Adaline
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Model lingwistyczny – wnioskowanie Mamdani’ego
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania.
Sieci Hopfielda.
Sieci neuronowe jednokierunkowe wielowarstwowe
formalnie: Budowa i zasada funkcjonowania sztucznych sieci neuronowych
Systemy wspomagania decyzji
Sztuczne Sieci Neuronowe
Systemy Wspomagania Decyzji
Teoria sterowania 2012/2013Sterowanie – użycie obserwatorów pełnych II Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Sterowanie.
Metody Lapunowa badania stabilności
Obserwatory zredukowane
Stabilność Stabilność to jedno z najważniejszych pojęć teorii sterowania W większości przypadków, stabilność jest warunkiem koniecznym praktycznego zastosowania.
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Systemy Wspomagania Decyzji
Elementy Rachunku Prawdopodobieństwa i Statystyki
Systemy wspomagania decyzji
Modelowanie i Identyfikacja 2011/2012 Metoda propagacji wstecznej Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Warstwowe.
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Modelowanie i podstawy identyfikacji 2012/2013Modele fenomenologiczne - dyskretyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2012/2013Sterowalność - osiągalność Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Sterowalność - osiągalność
Miary efektywności/miary dobroci/kryteria jakości działania SSN
Perceptrony proste liniowe - Adaline
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Obserwowalność i odtwarzalność
Sterowalność - osiągalność
Sterowanie – metody alokacji biegunów II
SYSTEMY EKSPERTOWE I SZTUCZNA INTELIGENCJA
Systemy Wspomagania Decyzji
Do technik tych zalicza się: * sztuczne sieci neuronowe
Systemy dynamiczne 2014/2015Obserwowalno ść i odtwarzalno ść  Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Obserwowalność.
Metody Sztucznej Inteligencji – technologie rozmyte i neuronowe Wnioskowanie Mamdani’ego - rozwinięcia  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii.
Metody Sztucznej Inteligencji – technologie rozmyte i neuronowe Sieci jednowarstwowe - perceptrony proste progowe  Dr hab. inż. Kazimierz Duzinkiewicz,
Metody sztucznej inteligencji – technologie rozmyte i neuronoweReguła propagacji wstecznej  Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów.
 Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Metody sztucznej inteligencji – Technologie rozmyte i neuronoweSystemy.
Podstawy automatyki I Wykład 1b /2016
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Modelowanie i podstawy identyfikacji 2015/2016 Modele neuronowe – podstawy,
GeneracjeTechnologia Architektura przetwarzania 0. Przekaźniki elektromechaniczne 1. Lampy elektronowe 2. Tranzystory 3. Układy scalone 3.5.Układy dużej.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie Mamdani’ego I © Kazimierz Duzinkiewicz, dr hab.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie Mamdani’ego II © Kazimierz Duzinkiewicz, dr hab.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Perceptrony proste nieliniowe i wielowarstwowe © Kazimierz Duzinkiewicz, dr hab.
Metody sztucznej inteligencji - Technologie rozmyte i neuronowe 2015/2016 Systemy rozmyte – wnioskowanie formalne © Kazimierz Duzinkiewicz, dr hab. inż.
Inteligencja Obliczeniowa Perceptrony o dużym marginesie błędu
Metody optymalizacji Wykład /2016
Modelowanie i podstawy identyfikacji
Systemy neuronowo – rozmyte
Teoria sterowania Wykład /2016
Podstawy automatyki I Wykład /2016
Perceptrony o dużym marginesie błędu
Metody sztucznej inteligencji
Perceptrony o dużym marginesie błędu
Systemy Ekspertowe i Sztuczna Inteligencja trudne pytania
Sterowanie procesami ciągłymi
Inteligencja Obliczeniowa Perceptrony
Zapis prezentacji:

Warstwowe sieci jednokierunkowe – perceptrony wielowarstwowe Perceptrony proste nieliniowe Pojedynczy perceptron nieliniowy

Perceptrony proste nieliniowe Stosowane funkcje aktywacji nieliniowe różniczkowalne z łatwo obliczalnymi pochodnymi względem sygnału pobudzenia Przykład: funkcje sigmoidalne - funkcja sigmoidalna logarytmiczna (niesymetryczna): - funkcja sigmoidalna tangensa hiperbolicznego (symetryczna)

Perceptrony proste nieliniowe Funkcja sigmoidalna logarytmiczna (niesymetryczna): Pochodna funkcji sigmoidalnej logarytmicznej

Perceptrony proste nieliniowe Funkcja sigmoidalna tangensa hiperbolicznego (symetryczna) Pochodna funkcji sigmoidalnej tangensa hiperbolicznego

Perceptrony proste nieliniowe Perceptrony proste nieliniowe - warstwa Konwencje notacji: jak poprzednio

Reguła uczenia perceptronów nieliniowych – reguła delty Perceptrony proste nieliniowe Reguła uczenia perceptronów nieliniowych – reguła delty Sposób wyprowadzenia jak dla perceptronów liniowych bazujący na błędzie średnim kwadratowym Podobnie też rozważamy pojedynczy neuron

Błąd średni kwadratowy Perceptrony proste nieliniowe Funkcjonał jakości działania sieci w procesie uczenia Błąd średni kwadratowy gdzie: E[ ] oznacza wartość średnią (oczekiwaną) zmiennej losowej. Wartość oczekiwana liczona jest po wszystkich zbiorach par uczących. Zakładamy przy tym, że wybory kolejnych par uczących są niezależne od siebie

Perceptrony proste nieliniowe Poszukiwanie iteracyjne najlepszych wartości wag sieci nieliniowej prostej Zastępujemy (estymujemy)  wartość oczekiwaną kwadratu błędu  kwadratem błędu w k-tej iteracji (po pokazaniu sieci k-tej pary uczącej)

Perceptrony proste nieliniowe Podobnie jak dla perceptronu prostego liniowego, będziemy poszukiwać minimum metodą iteracyjną gradientu prostego; musimy zatem określić 1. kierunek gradientu (kierunek zmian x) 2. wielkość zmiany x w kierunku gradientu (wielkość kroku w kierunku gradientu)

Perceptrony proste nieliniowe Ogólna postać gradientu jest taka jak perceptronu liniowego, inne jest wyliczenie wyrażeń oraz wynoszą one teraz

Perceptrony proste nieliniowe

Perceptrony proste nieliniowe Otrzymaliśmy Ostatecznie możemy napisać wyrażenie na gradient miary jakości

Perceptrony proste nieliniowe Wyrażenie nazywane jest deltą (błędem) i-tego neuronu przy pokazaniu k‑tego wzorca sieci perceptronów prostych nieliniowych Metoda gradientu prostego daje nam regułę zmiany wartości wag i progów po pokazaniu sieci k-tej pary wzorców uczących

Perceptrony proste nieliniowe Podstawiając uzyskane wyniki (postać gradientu kwadratu błędu) do iteracyjnej formuły gradientu prostego otrzymamy lub Ostatnie zależności noszą nazwę reguły uczenia delty

Perceptrony proste nieliniowe Uogólnienie reguły delty dla warstwy

Sieci wielowarstwowe jednokierunkowe Struktura i wielkości związane

Sieci wielowarstwowe jednokierunkowe

Sieci wielowarstwowe jednokierunkowe

Sieci wielowarstwowe jednokierunkowe Dwie stosowane notacje Szczegóły: DODATEK 1

Sieci wielowarstwowe jednokierunkowe Przetwarzanie realizowane przez sieć Obliczanie odpowiedzi sieci (wzorców wyjściowych rzeczywistych) Dla m-tej warstwy możemy napisać lub gdzie: możemy traktować jako nieliniowy operator wektorowy Będziemy zakładali, że są identyczne dla całej warstwy i używali dla elementów wektora oznaczenia Szczegóły: DODATEK 2

Sieci wielowarstwowe jednokierunkowe Przetwarzanie realizowane przez sieć Przedstawione zależności ukazują: Odpowiedzi poszczególnych neuronów m-tej warstwy kształtowane są całkowicie przez aktualne wartości wag i progów związanych tylko z danym neuronem oraz przez wartości docierających aktualnie do warstwy sygnałów

Sieci wielowarstwowe jednokierunkowe Wyjście sieci (wyjście M-tej warstwy) Notacja 1 czyli

Sieci wielowarstwowe jednokierunkowe Notacja 2 czyli

Sieci wielowarstwowe jednokierunkowe Przedstawione zależności ukazują: Na wartości docierających do m-tej warstwy sygnałów wpływ mają wartości wag i funkcje przetwarzania wszystkich poprzednich warstw

Sieci wielowarstwowe jednokierunkowe Fakty Przy podaniu na wejście sieci pewnego wektora wejściowego p wektor wyjścia a zależy od wszystkich macierzy wag oraz wszystkich wektorów progów , lub inaczej od wszystkich Przy podaniu na wejście sieci pewnego wektora wejściowego p sygnał wyjścia im - tego neuronu m‑tej warstwy sieci zależy bezpośrednio od wartości wag tworzących im  - ty wiersz macierzy wag oraz od wartości progu znajdującego się w im - tym wierszu wektora progów , lub inaczej od im - tego wiersza macierzy

Koniec materiału prezentowanego podczas wykładu Dziękuję za uczestnictwo w wykładzie i uwagę

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Konwencje oznaczeń  liczba warstw w sieci M; indeks numeru warstwy przebiega zbiór  liczba neuronów w m-tej warstwie ; indeks numeru wyjścia warstwy m-tej przebiega zbiór ; wejście sieci jest traktowane jako wyjście otoczenia, przyjmuje się zatem Wyjście ostatniej warstwy jest wyjściem sieci

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  w sieci wielowarstwowej wyjście jednej warstwy staje się wejściem warstwy następnej; Można by zrezygnować z wprowadzania oddzielnego oznaczania indeksu wejścia warstwy m-tej, bowiem Dla odróżnienia jednak, kiedy indeks przebiega wejścia a kiedy wyjścia będziemy używali indeksu j dla wejść poszczególnych warstw; przyjmiemy zatem Liczba wejść m-tej warstwy ; indeks numeru wejścia warstwy m‑tej przebiega zbiór ; zachodzi oczywiście równość

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  wielkości związane z poszczególnymi warstwami będziemy oznaczali stosowanymi dotąd symbolami z indeksem górnym określającym numer warstwy  wektor wejść sieci Notacja 1 Notacja 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Możemy też używać terminu wektora wejść w odniesieniu do każdej warstwy. Wówczas wektor wejść m-tej warstwy Notacja 1 Notacja 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Zachodzi oczywiście:

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Z wszystkich wektorów wejść uczących tworzymy macierz Notacja 1 Czasem będziemy utożsamiali zapisy: ; dla dowolnego wektora wejściowego będziemy stosowali też symbol p

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Notacja 2 Czasem będziemy utożsamiali zapisy: ; dla dowolnego wektora wejściowego będziemy stosowali też symbol z

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Operując pojęciem wektora wejść dla poszczególnych warstw będziemy mieli Notacja 1

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Notacja 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  macierze wag i wektory progów m-tej warstwy neuronów Notacja 1

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Macierz wag związana jest z warstwą sieci. Z pojedynczym neuronem warstwy związany jest wektor wag. Mówiąc wektor wag domyślnie będziemy przyjmowali, że jest to wektor wierszowy (wiersz macierzy wag) Czasem będziemy utożsamiali zapisy: Wektor progów związany jest z warstwą sieci. Z pojedynczym neuronem warstwy związany jest próg (element wektora progów)

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Notacja 2 Czasem będziemy utożsamiali zapisy:

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  zbiór macierzy wag i wektorów progów Notacja 1 Notacja 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  wektor pobudzeń neuronów m-tej warstwy sieci dla danego wektora wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Możemy też operować pojęciem macierzy pobudzeń neuronów m-tej warstwy sieci dla danej macierzy wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2 Dla dowolnego wektora pobudzeń m-tej warstwy będziemy stosowali też symbol

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  wektor wzorców wyjściowych rzeczywistych m-tej warstwy sieci dla danego wektora wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Możemy też operować pojęciem macierzy wzorców wyjściowych rzeczywistych neuronów m-tej warstwy sieci dla danej macierzy wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2 Dla dowolnego wektora wzorców wyjściowych rzeczywistych m-tej warstwy będziemy stosowali też symbol

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje  wektor wzorców wyjściowych docelowych m-tej warstwy sieci dla danego wektora wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2

Sieci wielowarstwowe jednokierunkowe DODATEK 1 - Notacje Możemy też operować pojęciem macierzy wzorców wyjściowych docelowych neuronów m-tej warstwy sieci dla danej macierzy wejść (przy pewnych wartościach wag i progów) Notacja 1 i 2 Dla dowolnego wektora wzorców wyjściowych docelowych m-tej warstwy będziemy stosowali też symbol

Sieci wielowarstwowe jednokierunkowe DODATEK 2 Przetwarzanie realizowane przez sieć jednokierunkową wielowarstwową

Przetwarzanie realizowane przez sieć Obliczanie odpowiedzi sieci (wzorców wyjściowych rzeczywistych) Dla m-tej warstwy możemy napisać lub gdzie: możemy traktować jako nieliniowy operator wektorowy Będziemy zakładali, że są identyczne dla całej warstwy i używali dla elementów wektora oznaczenia

Przetwarzanie realizowane przez sieć Rozpisując dalej jak wyrażają się sygnały pobudzenia neuronów m-tej warstwy w notacji 1

Przetwarzanie realizowane przez sieć lub w notacji 2

Przetwarzanie realizowane przez sieć Poszczególne składowe wektora odpowiedzi m-tej warstwy wyrażają się zatem Notacja 1 Notacja 2