Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii.

Slides:



Advertisements
Podobne prezentacje
Metody badania stabilności Lapunowa
Advertisements

Metody Sztucznej Inteligencji 2012/2013Zastosowania systemów rozmytych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra Inżynierii Systemów Sterowania 1 Zastosowania.
Podstawy Automatyki 2009/2010 Projektowanie układów sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. 1 Katedra Inżynierii.
Przepływ prądu elektrycznego
Analiza obwodów liniowych w stanie dynamicznym
Metody Sztucznej Inteligencji w Sterowaniu 2009/2010Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz,
Systemy dynamiczneOdpowiedzi systemów – modele różniczkowe i różnicowe Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Systemy.
Kryterium Nyquista Cecha charakterystyczna kryterium Nyquist’a
Obserwowalność System ciągły System dyskretny u – wejścia y – wyjścia
Systemy dynamiczne – przykłady modeli fenomenologicznych
Systemy dynamiczne 2010/2011Systemy i sygnały - klasyfikacje Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania 1 Dlaczego taki.
Indukcja elektromagnetyczna
Elektryczność i Magnetyzm
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów regulacji.
Teoria sterowania Wykład 3
Automatyka Wykład 3 Modele matematyczne (opis matematyczny) liniowych jednowymiarowych (o jednym wejściu i jednym wyjściu) obiektów, elementów i układów.
Modele matematyczne przykładowych obiektów i elementów automatyki
Teoria sterowania SNSchematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Wykład 6 Charakterystyki czasowe obiektów regulacji
Systemy dynamiczne – przykłady modeli fenomenologicznych
układy i metody pomiaru siły, naprężeń oraz momentu obrotowego.
Pomiar prędkości obrotowej i kątowej
AUTOMATYKA i ROBOTYKA (wykład 4)
AUTOMATYKA i ROBOTYKA Wykładowca : dr inż. Iwona Oprzędkiewicz
Metody Lapunowa badania stabilności
Modelowanie – Analiza – Synteza
Modelowanie – Analiza – Synteza
Podstawy automatyki 2012/2013Transmitancja widmowa i charakterystyki częstotliwościowe Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr.
Modelowanie i identyfikacji SN 2013/2014Modele fenomenologiczne - linearyzacja Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Cechy modeli obiektów dynamicznych z przedstawionych przykładów:
Rozważaliśmy w dziedzinie czasu zachowanie się w przedziale czasu od t0 do t obiektu dynamicznego opisywanego równaniem różniczkowym Obiekt u(t) y(t) (1a)
Podstawy automatyki 2011/2012Dynamika obiektów – modele Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów.
Modelowanie i podstawy identyfikacji 2012/2013Schematy analogowe i blokowe, realizowalność modeli stanu Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii.
Budowa i zasada działania silnika elektrycznego
AUTOMATYKA i ROBOTYKA (wykład 5)
Wykład 4 Modele matematyczne obiektów, elementów i układów regulacji.
Przemysłowe Systemy Sterowania
Modelowanie i identyfikacja 2010/2011Optymalizacja miary efektywności działania sztucznych sieci neuronowych Dr hab. inż. Kazimierz Duzinkiewicz, Katedra.
Podstawy modelowania i identyfikacji 2011/2012Modele fenomenologiczne - metodyka Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Modelowanie i podstawy identyfikacji 2009/2010Modele fenomenologiczne - przykłady Kazimierz Duzinkiewicz, dr hab. inż.Katedra Inżynierii Systemów Sterowania1.
Teoria sterowania 2011/2012Stabilno ść Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Stabilność Stabilność to jedno.
Teoria sterowania 2011/2012Sterowanie – metody alokacji biegunów III Kazimierz Duzinkiewicz, dr hab. in ż. Katedra In ż ynierii Systemów Sterowania 1 Sterowanie.
Sterowanie – metody alokacji biegunów
Podstawy automatyki 2011/2012Systemy sterowania - struktury –jakość sterowania Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż.
Zastosowanie metody równań Lagrange’a do budowy modeli matematycznych
Wykład 5 Modele matematyczne obiektów regulacji
Modelowanie – Analiza – Synteza
ANALIZA DYNAMICZNA MANIPULATORÓW JAKO MECHANIZMÓW PRZESTRZENNYCH
Sterowanie – metody alokacji biegunów
Seminarium dyplomowe magisterskie
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Przykład 1: obiekt - czwórnik RC
Przykład 5: obiekt – silnik obcowzbudny prądu stałego
Podstawy automatyki 2014/2015Dynamika obiektów – modele  Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii.
Maszyny Elektryczne i Transformatory
Maszyny Elektryczne i Transformatory
Podstawy automatyki I Wykład 1b /2016
© Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Podstawy automatyki 2015/2016 Dynamika obiektów - modele 1 Podstawy automatyki.
Zasada działania prądnicy
Literatura ● J. Osiowski, J. Szabatin, Podstawy teorii obwodów, tom I-III, 1992 ● M. Krakowski, Elektrotechnika teoretyczna, tom I – Obwody liniowe i nieliniowe.
Podstawy automatyki I Wykład 3b /2016
Modelowanie i podstawy identyfikacji
Indukcja elektromagnetyczna
Podstawy automatyki I Wykład /2016
3. Sposób działania transformatora.
Sterowanie procesami ciągłymi
Sterowanie procesami ciągłymi
O zjawiskach magnetycznych
Współczesne Maszyny i Napędy Elektryczne
Współczesne Maszyny i Napędy Elektryczne
Zapis prezentacji:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1 Przykład 5: obiekt – silnik obcowzbudny prądu stałego Cel budowy modelu: chcemy wpływać zmianami napięcia twornika na prędkość kątową silnika – potrzebny jest nam model ustalający prawo przetwarzania napięcia twornika w prędkość kątową silnika

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 2 Wyróżnienie trzech podsystemów: mechanicznego elektrycznego – obwodu twornika elektrycznego – obwodu wzbudzenia Cześć elektryczna – obwód twornika Cześć elektryczna – obwód wzbudzenia

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3 Założenia: 1. obwody magnetyczne silnika pracują w zakresie liniowych części charakterystyk magnesowania 2. prąd wzbudzenia silnika utrzymywany jest na stałej wartości 3. moment oporowy zewnętrzny jest pomijalnie mały, silnik musi pokonywać moment oporowy wewnętrzny i moment bezwładności

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4 Model matematyczny – część mechaniczna: Równanie różniczkowe: z warunkiem początkowym: lub: Część mechaniczna

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5 Część elektryczna – obwód twornika Budowa modelu: Prawo równowagi – warunek spójności - II prawo Kirchhoffa dla obwodu twornika: - napięcie na zaciskach obwodu twornika - spadek napięcia na rezystancji obwodu twornika - siła elektromotoryczna indukowana w uzwojeniu twornika

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 6 Zależności wiążące: siła elektromotoryczna wynikająca ze zmian w czasie strumienia magnetycznego sprzężonego z uzwojeniem twornika siła elektromotoryczna wynikająca z ruchu zwojów uzwojenia twornika względem jakiegoś strumienia magnetycznego

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7 Dla uzwojenia twornika: z warunku pracy na liniowej części charakterystyki magnesowania: z warunku utrzymywania stałej wartości prądu wzbudzenia

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8 Dla uzwojenia twornika: z warunku pracy na liniowej części charakterystyki magnesowania: Ψ t - strumień magnetyczny skojarzony z uzwojeniem twornika

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9 Ostatecznie: Podstawienia – wykorzystanie założeń i zależności wiążących:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 10 Model matematyczny – część elektryczna – obwód twornika: Równanie różniczkowe: z warunkiem początkowym: lub:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 11 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 5: Struktura modelu Model matematyczny – silnik p.s.:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 12 Model matematyczny – silnik p.s.- eliminacja i t : Różniczkowanie (1): (1) (2) (3) Przykład 6:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 13 Podstawieniez (2) do (3) Podstawieniez (1) do (4) (4) (5)

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 14 Porządkowanie (5): Ostatecznie:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 15 Graficzne zobrazowanie: Obiekt dynamiczny Prawo przekształcenia u(t) w y(t) Przykład 6: Struktura modelu Model matematyczny – silnik p.s.:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 16 Przykład 7: Usunięcie założenia o nieznaczącej wartości momentu oporowego zewnętrznego: Model matematyczny – część mechaniczna:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 17 Graficzne zobrazowanie: Obiekt dynamiczny prawo przekształcenia u(t) w y(t) Przykład 6: Struktura modelu Model matematyczny – silnik p.s.:

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 18 Praca własna: czy można z modelu silnika p.s. z przykładu 6 wyeliminować i t ? Dalsze przykłady modeli obiektów/systemów dynamicznych Ćwiczenia – w tym semestrze i laboratorium – w przyszłym semestrze

Podstawy automatyki 2010/2011Dynamika obiektów – modele – c.d. Mieczysław Brdyś, prof. dr hab. inż.; Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 19