MIĘDZYNARODOWE UNORMOWANIA WYRAŻANIA NIEPEWNOŚCI POMIAROWYCH

Slides:



Advertisements
Podobne prezentacje
Ocena dokładności i trafności prognoz
Advertisements

Statystyka Wojciech Jawień
Statystyczna kontrola jakości badań laboratoryjnych wg: W.Gernand Podstawy kontroli jakości badań laboratoryjnych.
Analiza współzależności zjawisk
Pochodna Pochodna  funkcji y = f(x)  określona jest jako granica stosunku przyrostu wartości funkcji y do odpowiadającego mu przyrostu zmiennej niezależnej.
BUDOWA MODELU EKONOMETRYCZNEGO
MIARY ZMIENNOŚCI Główne (wywołujące zmienność systematyczną)
Statystyczne parametry akcji
Statystyczne parametry akcji
Statystyka w doświadczalnictwie
Jakość sieci geodezyjnych. Pomiary wykonane z największą starannością, nie dostarczają nam prawdziwej wartości mierzonej wielkości, lecz są zwykle obarczone.
Analiza korelacji.
Niepewności przypadkowe
Universal and Nonuniversal Properties of Cross Correlation in Financial Time Series Vasiliki Plerou, Parameswaran Gopikrishnan, Bernd Rosenow, Luı´s A.
Korelacje, regresja liniowa
Rozkład normalny Cecha posiada rozkład normalny jeśli na jej wielkość ma wpływ wiele niezależnych czynników, a wpływ każdego z nich nie jest zbyt duży.
BŁĘDY I NIEPEWNOŚCI POMIARU M-T2 POJĘCIA WYZNACZANIE ZASTOSOWANIE.
Metody Symulacyjne w Telekomunikacji (MEST) Wykład 6/7: Analiza statystyczna wyników symulacyjnych  Dr inż. Halina Tarasiuk
Średnie i miary zmienności
Analiza wariancji.
AGH Wydział Zarządzania
Opracowanie wyników pomiarów
Hipotezy statystyczne
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
O FIZYCE Podstawowe pojęcia.
N IEPEWNOŚĆ POMIAROWA Projekt wykonała: Monika WALA ZIP 31 END.
Elementy Rachunku Prawdopodobieństwa i Statystyki
Elementy Rachunku Prawdopodobieństwa i Statystyki
WYNIKU POMIARU (ANALIZY)
NIEPEWNOŚĆ POMIARU Politechnika Łódzka
Elementy Rachunku Prawdopodobieństwa i Statystyki
Błędy i niepewności pomiarowe II
Dopuszczalne poziomy hałasu
Henryk Rusinowski, Marcin Plis
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Niepewności pomiarowe, cz. I
Wnioskowanie statystyczne
Weryfikacja hipotez statystycznych
Przenoszenie błędów (rachunek błędów) Niech x=(x 1,x 2,...,x n ) będzie n-wymiarową zmienną losową złożoną z niezależnych składników o rozkładach normalnych.
Mostek Wheatstone’a, Maxwella, Sauty’ego-Wiena
RACHUNEK NIEPEWNOŚCI POMIARU
Terminologia kontroli jakości w normach międzynarodowych
Fizyka jako nauka przyrodnicza
Statystyczne parametry akcji Średnie Miary rozproszenia Miary współzależności.
Konsultacje p. 139, piątek od 14 do 16 godz.
Statystyczna analiza danych w praktyce
Statystyczna analiza danych
Statystyczna analiza danych
Korelacje dwóch zmiennych. Korelacje Kowariancja.
Szkoła Letnia, Zakopane 2006 WALIDACJA PODSTAWOWYCH METOD ANALIZY CUKRU BIAŁEGO Zakład Cukrownictwa Politechnika Łódzka Krystyna LISIK.
Rozkłady statystyk z próby dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium.
Autorzy pracy: Michał Lemański Michał Rozmarynowski I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Wieluniu Pomiar przyspieszenia ziemskiego przy.
Weryfikacja hipotez statystycznych „Człowiek – najlepsza inwestycja”
Fundamentals of Data Analysis Lecture 12 Approximation, interpolation and extrapolation.
STATYSTYKA – kurs podstawowy wykład 8 dr Dorota Węziak-Białowolska Instytut Statystyki i Demografii.
STATYSTYKA – kurs podstawowy wykład 11
Estymacja parametryczna dr Marta Marszałek Zakład Statystyki Stosowanej Instytut Statystyki i Demografii Kolegium Analiz.
Dokładność NMT modelowanie dokładności NMT oszacowanie a priori badanie a posteriori.
Niepewności pomiarów. Błąd pomiaru - różnica między wynikiem pomiaru a wartością mierzonej wielkości fizycznej. Bywa też nazywany błędem bezwzględnym.
POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH METROLOGIA Andrzej.
zasilanego z sieci energetycznej obiektu
METROLOGIA Podstawy rachunku błędów i niepewności wyniku pomiaru
Błędy i niepewności pomiarowe II
POLITECHNIKA RZESZOWSKA im
METROLOGIA Statystyczne metody poprawienia dokładności
Jednorównaniowy model regresji liniowej
Analiza niepewności pomiarów Zagadnienia statystyki matematycznej
Analiza niepewności pomiarów
Zapis prezentacji:

MIĘDZYNARODOWE UNORMOWANIA WYRAŻANIA NIEPEWNOŚCI POMIAROWYCH Adam Michczyński

W roku 1995 grupa instytucji międzynarodowych: ISO – International Organization for Standardization (Międzynarodowa Organizacja Normalizacyjna), BIMP – Bureau International des Poids et Measures (Międzynarodowe Biuro Miar), IEC – International Electrotechnical Commission (Międzynarodowa Komisja Elektrotechniczna), IFCC – International Federation of Clinical Chemistry (Międzynarodowa Federacja Chemii Klinicznej), UIPAC – International Union of Pure and Applied Chemistry (Międzynarodowa Unia Chemii Czystej i Stosowanej), UIPAP - International Union of Pure and Applied Physics (Międzynarodowa Unia Fizyki Czystej i Stosowanej), OMIL – International Organization of Legal Metrology (Międzynarodowa Organizacja Metrologii Prawnej), NIST – National Institute of Standards and Technology (Narodowy Instytut Standardów i Technologii) dokonała uzgodnienia międzynarodowych norm dotyczących niepewności pomiarowych.

Normy te opublikowano w instrukcji ISO Guide to the Expression of Uncertainty in Measurement. Na język polski normy te zostały przetłumaczone w 1999 roku i opublikowane przez Główny Urząd Miar w książceWyrażanie niepewności pomiarowych, Przewodnik. Nowa norma konsekwentnie przyjmuje podejście statystyczne do rachunku niepewności. Istotne elementy nowej normy to: rozróżnienie niepewności pomiarowych od błędów pomiarowych przyjęcie jako miary niepewności „niepewności standardowej” rozróżnienie dwóch sposobów oceny niepewności (A i B) rozróżnienie pomiarów skorelowanych i nieskorelowanych w pomiarach pośrednich (złożonych) wprowadzenie pojęcia „niepewności rozszerzonej” określenie sposobu zapisu wyników pomiarowych i ich niepewności

NIEPEWNOŚĆ A BŁĄD POMIARU NIEPEWNOŚĆ STANDARDOWA BŁĄD POMIARU = wartość zmierzona – wartość rzeczywista NIEPEWNOŚĆ POMIARU (uncertainty) jest związanym z rezultatem pomiaru parametrem, który charakteryzuje rozrzut wyników i może być w uzasadniony sposób przypisany wartości mierzonej. Międzynarodowa Norma przyjmuje jako niepewność pomiaru wielkość nazywaną NIEPEWNOŚCIĄ STANDARDOWĄ (standard uncertainty), a określoną jako pierwiastek kwadratowy z estymatora wariancji. Jako symbol niepewności standardowej przyjęto u lub u(x).

OCENA NIEPEWNOŚCI METODĄ TYPU A Ocena niepewności metodą typu A dotyczy określania niepewności pomiaru drogą analizy statystycznej serii wyników pomiarów. Zatem niepewność standardowa oceniana metodą typu A jest zdefiniowana jako odchylenie standardowe średniej.

OCENA NIEPEWNOŚCI METODĄ TYPU B Ocena niepewności metodą typu B dotyczy określania niepewności pomiaru drogą inną niż metoda A tzn. wówczas gdy nie mamy do czynienia z serią wyników lub gdy w serii wyników nie występuje rozrzut. W metodzie tej niepewność standardową określa się na podstawie rozkładu prawdopodobieństwa możliwych wyników pomiarów znanego, bądź założonego przez eksperymentatora. Źródłem wiedzy o rozkładzie mogą być: Specyfikacja dostarczona przez producenta przyrządu, Wcześniejsze dane pomiarowe, Ogólna wiedza o zachowaniu i własnościach określonych materiałów i instrumentów, Niepewności przypisane danym pochodzącym z podręczników.

OCENA NIEPEWNOŚCI METODĄ TYPU B Najczęstszym przykładem oceny niepewności metodą typu B jest wyznaczenie niepewności wynikającej z dokładności przyrządu (niepewności wzorcowania). Przyrząd pomiarowy powinien gwarantować taką dokładność aby wynik pomiaru x różnił się od wartości rzeczywistej nie więcej niż o działkę elementarną - Dpx . Wiemy, że odchylenie wyniku pomiaru x od wartości rzeczywistej nie wykracza poza przedział ±Dpx tzn. wartość rzeczywista zawiera się na pewno w przedziale (x-Dpx , x+Dpx). W najprostszym przypadku możemy przyjąć, że prawdopodobieństwo uzyskania dowolnej wartości z tego przedziału jest takie samo – tzn. opisuje je rozkład równomierny (jednorodny). Jeżeli skorzystamy ze wzoru na dyspersję rozkładu równomiernego to otrzymamy następujące wyrażenie na niepewność standardową:

NIEPEWNOŚĆ CAŁKOWITA W przypadku gdy występują obydwa typy niepewności równocześnie wyznaczamy STANDARDOWĄ NIEPEWNOŚĆ CAŁKOWITĄ (złożoną) wykorzystując prawo propagacji niepewności. gdzie: uc(x) – niepewność całkowita, ur(x) – niepewność obliczona z rozrzutu statystycznego serii wyników pomiarów, up(x) – niepewność obliczona inną drogą niż z rozrzutu wyników. Prawo propagacji niepewności w powyższej formie wynika z prawa propagacji wariancji. Ponadto powyższy wzór zakłada, że czynniki odpowiedzialne za oba typy niepewności są od siebie niezależne.

NIEPEWNOŚĆ STANDARDOWA POMIARÓW POŚREDNICH Z pomiarami pośrednimi mamy do czynienia, gdy dokonuje się pomiarów bezpośrednich kilku wielkości x1, x2, …,xk , a następnie na ich podstawie wyznacza wielkość y określoną przez związek funkcyjny: y = f(x1, x2, …, xk) Międzynarodowa Norma rozróżnia pomiary skorelowane i nieskorelowane wielkości mierzonych bezpośrednio. W pomiarach nieskorelowanych każdą wielkość xi mierzy się w innym, niezależnym doświadczeniu. Pomiary skorelowane to takie, w których wielkości xi mierzone są w jednym doświadczeniu. W praktyce oznacza to, że większość pomiarów wielkości elektrycznych jest pomiarami skorelowanymi.

NIEPEWNOŚĆ STANDARDOWA POMIARÓW POŚREDNICH Niepewność standardową dla pomiarów pośrednich nieskorelowanych oblicza się ze wzoru: Natomiast w celu wyznaczenia niepewność standardowej dla pomiarów pośrednich skorelowanych należy uwzględnić korelacje zachodzące pomiędzy wielkościami mierzonymi bezpośrednio:

NIEPEWNOŚĆ ROZSZERZONA Na potrzeby wnioskowania o zgodności wyniku pomiaru z innymi rezultatami Międzynarodowa Norma wprowadza pojęcie NIEPEWNOŚCI ROZSZERZONEJ U(x) i WSPÓŁCZYNNIKA ROZSZERZENIA k. NIEPEWNOŚĆ ROZSZERZONA wynosi U(x) = k·u(x) i określa przedział ± U(x) otaczający wynik pomiaru, w którym zawiera się duża, z góry określona część wyników, jakie można przypisać wielkości mierzonej. Typowe wartości współczynnika rozszerzenia k mieszczą się w przedziale między 2 a 3.

PRZYKŁAD ZALECANEGO SPOSOBU ZAPISU NIEPEWNOŚCI NIEPEWNOŚĆ STANDARDOWA g = 9,781 m/s2 u(g) = 0,076 m/s2 g = 9,781(76) m/s2 NIEPEWNOŚĆ ROSZERZONA g = 9,78 m/s2 U(g) = 0,15 m/s2 g = (9,78 ± 0,15) m/s2

DZIĘKUJĘ PAŃSTWU ZA u(WAGĘ)