ELEKTROSTATYKA II.

Slides:



Advertisements
Podobne prezentacje
Wykład Rozwinięcie potencjału znanego rozkładu ładunków
Advertisements

Wykład Prawo Coulomba W 1785 roku w oparciu o doświadczenia z ładunkami Charles Augustin Coulomb doszedł do trzech następujących wniosków dotyczących.
5.6 Podsumowanie wiadomości o polu elektrycznym
Wykład Pole elektryczne i potencjał pochodzące od jednorodnie naładowanej nieprzewodzącej kuli W celu wyznaczenia natężenia posłużymy się prawem.
Wykład 9 7. Pojemność elektryczna
Wykład Gęstość energii pola elektrycznego
Krople wody – napiecie powierzchniowe vs pole elektr
kondensatory z dielektrykiem połączenia
Elekrostatyka Podstawowe pojęcia i prawa: ładunek, siła, natężenie pola, energia potencjalna, potencjał, prawo Coulomba, prawo Gaussa.
FIZYKA dla studentów POLIGRAFII Elektrostatyka
Elektrostatyka w przykładach
POTENCJAŁ ELEKTRYCZNY
Oddziaływania ładunków – (73) –zadania.
Wykład III ELEKTROMAGNETYZM
ELEKTROTECHNIKA z elementami ELEKTRONIKI
Kondensatory Autor: Łukasz Nowak.
DIELEKTRYKI TADEUSZ HILCZER
DIELEKTRYKI Wykład Tadeusz Hilczer.
DIELEKTRYKI TADEUSZ HILCZER
ELEKTROSTATYKA I.
Przewodnik naładowany
Wykład II.
Wykład VIIIa ELEKTROMAGNETYZM
Wykład IV Pole magnetyczne.
Wykład Materia w polu elektrycznym cd. pol
Elektrostatyka (I) wykład 16
FIZYKA dla studentów POLIGRAFII Pole magnetyczne
FIZYKA dla studentów POLIGRAFII Elektrostatyka. Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest 1 kulomb.
FIZYKA dla studentów POLIGRAFII Pole magnetyczne.
FIZYKA dla studentów POLIGRAFII Pole magnetyczne
DYNAMIKA Zasady dynamiki
WARUNKI BRZEGOWE. FALE NA GRANICY OŚRODKÓW
ELEKTROSTATYKA.
Prawo Gaussa Strumień natężenia pola elektrycznego przenikający przez dowolną powierzchnię zamkniętą w jednorodnym środowisku o bezwzględnej przenikalności.
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm
kondensatory z dielektrykiem połączenia
Wykład 6 Elektrostatyka
Prąd elektryczny Wiadomości ogólne Gęstość prądu Prąd ciepła.
Elektrostatyka.
MECHANIKA 2 Wykład Nr 11 Praca, moc, energia.
Wykład 7 Elektrostatyka, cz. 2
Pole elektryczne Pole grawitacyjne Siła WYKŁAD BEZ RYSUNKÓW Natężenie
ELEKTROSTATYKA I PRĄD ELEKTRYCZNY
Układy sterowania i regulacji
MECHANIKA 2 Wykład Nr 10 MOMENT BEZWŁADNOŚCI.
Pole elektryczne. Prawo Coulomba. Przenikalność elektryczna środowisk.
Elektrostatyka c.d..
Elektrostatyka.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
GRUPA A Korzystając z prawa Coulomba oblicz natężenie pole elektrycznego w odległości R od nieskończonego pręta, naładowanego z gęstością liniową ładunku.
Dynamika ruchu płaskiego
Elektrostatyka.
Wykład Rozwinięcie potencjału znanego rozkładu ładunków na szereg momentów multipolowych w układzie sferycznym Rozwinięcia tego można dokonać stosując.
Dynamika ruchu obrotowego
Temat: Kondensator..
Temat: Natężenie pola elektrostatycznego
Dynamika bryły sztywnej
Niech f(x,y,z) będzie ciągłą, różniczkowalną funkcją współrzędnych. Wektor zdefiniowany jako nazywamy gradientem funkcji f. Wektor charakteryzuje zmienność.
Elementy elektromagnetyzmu. Ładunek elektryczny Natura ładunku jest ziarnista, kwantowa Cała materia zbudowana jest z cząstek elementarnych o ładunku.
Dipol elektryczny Układ dwóch ładunków tej samej wielkości i o przeciwnych znakach umieszczonych w pewnej odległości od siebie. Linie sił pola pochodzącego.
Trochę matematyki - dywergencja Dane jest pole wektora. Otoczymy dowolny punkt P zamkniętą powierzchnią A. P w objętości otoczonej powierzchnią A pole.
Elektromagnetyzm Ładunek elektryczny
10. Podstawy elektrostatyki
6. Ruch obrotowy W czystym ruchu obrotowym każdy punkt ciała sztywnego porusza się po okręgu, którego środek leży na osi obrotu (ruch wzdłuż linii prostej.
Treści multimedialne - kodowanie, przetwarzanie, prezentacja Odtwarzanie treści multimedialnych Andrzej Majkowski informatyka +
ELEKTROSTATYKA.
Superpozycja natężeń pól grawitacyjnych
Zapis prezentacji:

ELEKTROSTATYKA II

Dipol elektryczny Dipolem elektrycznym nazywamy układ dwóch ładunków elektrycznych o jednakowych wartościach bezwzględnych i przeciwnych znakach, +q i −q, umieszczonych w odległości l od siebie . Wektor nazywa się momentem elektrycznym dipola (momentem dipolowym). Jest on skierowany od ładunku ujemnego do dodatniego. Wymiarem momentu dipolowego jest: [p] = C · m.

Pole elektryczne dipola elektrycznego Punkt pola elektrycznego P leży na osi dipola. Wyznaczymy natężenie tego pola elektrycznego w punkcie P, który znajduje się w odległości z od środkowego punktu dipola, na osi przechodzącej przez ładunki, zwanej osią dipola. Stosując zasadę superpozycji dla natężeń pól elektrycznych znajdujemy wartość E natężenia pola elektrycznego w punkcie P: E = E+ - E- Po przekształceniach algebraicznych i przyjęciu, że z>>d otrzymujemy wzór: Iloczyn qd jest to moment dipolowy: p = qd

Dipol w jednorodnym polu elektrycznym Wypadkowa siła, działająca na dipol umieszczony w zewnętrznym, jednorodnym polu elektrycznym jest równa zeru, ponieważ siły działające na ładunki +q i –q równoważą się . Natomiast na dipol działa moment skręcający.

Energia potencjalna dipola elektrycznego Pracę wykonaną przy obrocie dipola od początkowego położenia, określonego kątem θ1 do końcowego położenia określonego kątem θ2 wynosi: Energia potencjalna dipola elektrycznego Pracę W można wyrazić jako różnicę energii potencjalnych :

IZOLOWANY PRZEWODNIK Zastosujmy prawo Gaussa do wybranej Większość ciał stałych można podzielić na przewodniki i izolatory. W przewodnikach ładunki elektryczne mogą się swobodnie poruszać natomiast w izolatorach (dielektrykach) ładunki pozostają nieruchome. W izolatorze nadmiarowy ładunek może być rozmieszczony w całej jego objętości. Natomiast gdy w przewodniku rozmieścimy ładunek w sposób przypadkowy to będzie on wytwarzał pole elektryczne przemieszczające swobodne elektrony na powierzchnię przewodnika dopóki nie zniknie pole wewnątrz przewodnika. Wtedy na ładunki nie działa już siła i otrzymujemy statyczny rozkład ładunku. Zastosujmy prawo Gaussa do wybranej powierzchni S. Cały ładunek gromadzi się więc na powierzchni przewodnika.

Gęstość ładunku Gęstość powierzchniowa: Gęstość objętościowa: Gęstość liniowa: Natężenie pola E na powierzchni przewodnika:

KONDENSATORY Układ dwóch przewodników, który może gromadzić ładunek elektryczny, przy przyłożonej różnicy potencjałów, nazywamy kondensatorem , a te przewodniki okładkami kondensatora. Aby naładować kondensator należy podłączyć go do źródła prądu

Pojemność kondensatora Wielkością charakteryzującą kondensator jest jego pojemność. Pojemnością elektryczną nazywamy stosunek ładunku kondensatora do różnicy potencjałów (napięcia) między okładkami. ΔV = U – napięcie elektryczne [V] q – ładunek elektryczny [ C ] C – pojemność elektryczna Jednostką pojemności jest farad - F

Kondensator płaski Różnica potencjałów: S – powierzchnia czynna okładek [ ] d – odległość okładek [m]

Kondensator walcowy Kondensator walcowy o długości L, zbudowany z współosiowych powierzchni walcowych o promieniach a i b. S=2πrL

Kondensator kulisty Kondensator ten tworzą dwie współśrodkowe powłoki sferyczne o promieniach a i b. Jako powierzchnię Gaussa wybieramy sferę o promieniu r

Łączenie kondensatorów Połączenie szeregowe Połączenie równoległe

Energia pola elektrycznego Praca wykonana przy ładowaniu kondensatora zostaje zmagazynowana w postaci elektrycznej energii potencjalnej Praca zużyta na przeniesienie porcji ładunku dq pomiędzy okładkami przy panującej w danej chwili różnicy potencjałów ΔV wynosi: dW=ΔVdq Gęstość energii w , jest energią zawartą w jednostce objętości

Kondensator z dielektrykiem Jeżeli między okładkami umieścimy substancję, to pojemność kondensatora wzrasta od C do C’. Możemy wówczas określić względną przenikalność dielektryczną substancji Gdy dielektryk umieścimy w polu elektrycznym to pojawiają się indukowane ładunki powierzchniowe, które wytwarzają pole elektryczne przeciwne do zewnętrznego pola elektrycznego